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Abstract. Let G be a connected graph. A vertex w is said to strongly resolve a pair #, v of
vertices of G if there exists some shortest # — w path containing v or some shortest v — w path
containing u. A set W of vertices is a local strong resolving set for G if every pair of adjacent
vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a local
strong resolving set for G is called the local strong metric dimension of G. In this paper we
studied the local strong metric dimension in the join of graphs. We use the path, cycle,
complete, and star graphs in this studics.

1. Introd uction

Graph theory is a subject in mathematics which first introduced by a Swiss mathematician named
Leonard Euler in 1736, as an effort to solve the Konigsberg Bridge problem [4]. Graphs are used to
represent discrete objects and the relationships between those objects. The visual representation of a
graph is to represent objects as vertices (nodes) and the relationships between objects as edges [2].
One of the studies that continue to develop in graph theory is matric dimension.

The concept of metric dimension in graph theory has been introduced separately by Slater in 1975
and by Harrary and Melter in 1976. Slater relates the problem of metric dimensions to determine the
number of sonar detection tools in a network [8] while Harrary defines metric dimensions through the
set of differentiators. This concept can be used to distinguish each point on a graph € by determining
its representation againt the set of vertices from & [1]. The concept of metric dimension then was
developed into local metric dimensions by Okamoto et al. [7]. This concept states that every adjacent
vertices on a graph has different representation in regard to local differentiators [3]. Okamoto et al.
obtained the result that a nontrivial connected graph G has local metric dimension n — 1 if and only if
G is complete graphs. Also, graph & has a local metric dimension of 1 if and only if G is bipartite
graphs.

Another developed concept of metric dimension is strong metric dimension. This concept is found
by Sebo and Tannier in 2004. A vertex w is said to strongly resolve a pair u, v of vertices of G if there
exists some shortest u — w path containing v or some shortest ¥ — w path containing u [6]. A set that
contains those vertices is called strong resolving set of G. The strong metric dimension of G is the
smallest cardinality of strong resolving set, denoted by sdim(G). The concept of strong metric
dimension then developed into local strong metric dimension [10]. A set W of vertices is alocal strong
resolving set for G if every pair of adjacent vertices of G is strongly resolved by some vertex of W.
The smallest cardinality of a local strong resolving set for G is called the local strong metric dimension
of &, denoted by dim;(G). Several results regarding local strong metric dimension has been found in
path graph, star graph, complete graph, cycle graph, and graph resulting from corona product.
m Conent from this work may be used under the werms of the Creative Commons Attribution 3.0 licence. Any further disribution
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Research on local strong metric dimension has been carried out by Susilowati et al. [9] on k —level
corona product graphs. The next research was conducted by Sutardji et al. [10] on cartesian product
graph. Furthermore, research on the graph resulting from join operation has been camried out by
Kuziak et al. [5] to get the strong metric dimension.

Therefigge, in this paper we discuss the local strong metric dimension in the join of graphs.
Theorem 1.1 [10] Let G be a connected graph of order n = 2, then

i. dimy(G) = 1 if and only if G is bipartite graph

ii. dim,(G) = n— 1 ifand only if G is complete graph
Theorem 1.2 [9] Let P,, be a path graph, C,, be a cvcle, and S, be a star graph, then

1.dimy(P,) = 1

. 1 ifniseven

2. dimys(C,) = {2 if nisodd

3.dimy(S,) =1

2, Local strong metric dimension of K; + G

In this section, we obtained the local strong metric dimension in the join between a trivial graph (K;)
and G, where G is one of the following graphs, which are path (B,), cycle (C,;), complete graph (K,,),
and star graph (5,,).

Before we discuss the local strong metric dimension in those graphs, we need to know the symbol
of I[u, v] which denotes the shortest path between vertex u and vertex v. If W € V() is a local
strong resolving set, then a vertex w € W is said to strongly resolve an adjacent pair u, v of vertices of
G if u € Iy, w] or v € I[u, w]. We do not have to check every adjacent vertices in &, just adjacent
vertices in G other than W .

Generally speaking, if G is graph resulting from join operation then diam(G) = 2, where diam(G)
is diameter of G which is diam(G) = max, yey gy d(1,v) . So, in the join of graphs, d (i, v) = 2 if u
and v are not adjacent vertices.

Theorem 2.1 Let G be a join graph K, + B,, where P, is a path, then dim;;(G) =2 if2 <n <5 and
[n%Z]] +1 for(n—3)mod 4 <3

dimy; (6) = [H%J] +1 for(n—3)mod4 =3

ifn>5, where [x] =mform <x<m+1 and
m is integer.
Proof.
Let V(G) ={c}u {y;]i=12,..,n}and E(G) = {cy|1 <i <n}u{yvn|i=12,..,n—1}.
Casel.For2<n<5
Let W = {c, vns1} if n is odd and W = {¢, vn} if n is even. Then for every pair of adjacent vertices
2 2

in V(G)\W:
i. (Vi Vig1) = Vigr € I[vg,vigo] or v; € Iviy, visq]
ii. (¢, v;) = ¢ € I[v;,v;] where v; and v; are not adjacent
So, W is a local strong resolving set of G.
Next, we will prove that W is the local strong resolving set with the smallest cardinality. Take any
set W' € V(G) where IW'| < 2. so there are two option of W' which are:
i. If W' = {c} thefflfor a pair adjacent vertice (v, V;11) = Viyq € I[v;, ¢] and v; € I[vi41,¢]. So
W' = {c}isnot alocal strong resolving set of G.
ii.If W' = {v;} theflfor a pair adjacent vertice (c,;,1) = Vi1 € I[c,v;] and ¢ € Iy 1, v;]. So
W' = {v;] is not a local strong resolving set of G.
Based on the argument above, W' where |W’| = 1 is not a local strong resolving set of G. Therefore,
W is the local strong resolving set with the smallest cardinality. Thus, dim;.(G) =2if2 <n < 5.
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Case2.Forn> 5
A n—3 .
Let W = {vﬂ-” i=0.1,... [T]] if mM—3)mod4<3 and W = {vﬂ”
{vp}if (n — 3)mod 4 < 3.Then for every pair of adjacent vertices in V (G)\W:
i (v, 15) = vy €1fvy, v3]
s . . n-3
1 (Vai4ar Vaies) = Vaisa € [[Vsigs, Vagea] fori = 0,1, ... [ ]

il (Vai4s, Vaive) = Vsise € [Vaiss, Vagivny+al for i =0,1,. [ ]
So, W is a local strong resolving set of G.
Next, we will prove that W is the local strong resolving set with the smallest cardinality. Take any
set W' € V(G) where |W'| < |W|. Suppose W' = W — {a} where a € W, then:
i.If W =W —{v3} then for pair adjacent vertice (vy,v;) = vz & I[vy, w] and v; € I{v, wl,
where w € W’. So W' is not a local strong resolving set of G.

i=01..[ v

LI W =W — (vypqa} where k = 1,2, ..., [?] then for a pair adjacent vertice (v.n+ 1, Vaksz) =
Vg1 € [ Vapeezow] and vgp4; € 1[vgpsq, w], where we W', So W' is not a local strong
resolving set of G. 1

Based on the argument above, W' where |W'| <|W]| is not a local strong resolving set of G.
Therefore, W is the local strong resclving set with the smallest cardinality. Thus, dim,(G) =
[<]+1 for (n—3)mod 4 <3

ifn>5. ]
[— +1 for (n—3)mod 4 =3

Theorem 22 Let G be a join graph Ky + C,, where C, is a cycle graph, then dim(G) =3 if
3<n<5anddim(G) = [— +1 ifn > 5, where [x] =mform <x <m+1and mis integer.
Proof.
Let V(G) ={c}U{v|i=12,..,n} and E(G) ={cv;ili=12,...,n}U{vv;1|i =12,...,n—=1}U
{viv,}.
Casel.For3<n<5

Let W = {c,vq,vn1} if n is odd and W = {c, vy, vn} if n is even. Then for every pair of adjacent

2 2

vertices in V (G)\W:
i (Ul- vn,) -1 = "[Un- UZ] or v, = "[Ul- Vn- 1]
i (Wi vier) = Vi € 1w, vi42] or v; € 1[viy, visq]
iii. (c,v;) = c € 1|v;,v;] where v; and v; are not adjacent
So, W is a local strong resolving set of G.
Next, we will prove that W is the local strong resolving set with the smallest cardinality. Take any
set W' € V(G) where |W’'| < 3. so there are three option of W' which are:
i If W' ={c,v;} then for a pair adjacent vertice (Vjyy, Vj4z) = Vppq @ I[Vpyy, c] and v, &
1[viy1,c]. So W' = {c,v;} is not a local strong resolving set of G.
i. f W ={v,v;,,} then for a pair fRljacent vertice (c,Vi42) = Visn € Ilc,v] and c &
I[Vi42, V51 So W' = {v;,v;,,} is not a local strong resolving set of G.
iii. If W' = {v;, v}, where v; and v; are not adjacent, then fna pair adjacent vertice (r: V;+1)
Vg1 € I[e,v;]and c € "[7{:+1- vj] SoW' = {v,v; Jg§ not alocal strong resolving set of G.
Based on the argument above, W' where |W'| = 2 is not a local strong resolving set of G. Therefore,

W is the local strong resalving set with the smallest cardinality. Thus, dim,;(G) =3if3 <n < 5.
Case2.Forn>5

Let W = {U+é+1

i=0,1,.., [n%l]} Then for every pair of adjacent vertices in V(G)\W:
. . n—1
L (Vairz, Vaies) 2 Vaisz € I[Vazyz, Vagea] fori = 0,1, .., [_]

i (Vaie3, Vairs) = Vaiea € I[Vagas, Vageny4r ] for i= 0,1, .. [ ]
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it (c,v;) = ¢ € v, vapalfor i = 12, ., [
So, W is a local strong resolving set of G.

Next, we will prove that W is the local strong resolving set with the smallest cardinality. Take any
set W' C V(G) where [W’'| < |W|. Suppose W' = W — {a} where a € W, then if W' = W — {1}

where k = 0,1, ...,[":1] then for a pair adjacentnemce (Vare+2) Varrz) = Vagrz & 1[Vgp43, w] and

Vaks3 & 1[Vagsz, w]. where w € W'. So W’ is not a local strong resiving sct of &.
Based on the argument above, W’ where |W'| < |W| is not a local strong resolving set of G.

Therefore, W is the local strong resolving set with the smallest cardinality. Thus, dim,(G) = [n%l] +
1 ifn>5. ]

Theorem 23 Let G be a join graph K, + K,,, where Ky, is a complete graph with order n = 2, then
dim;,(6)=n

Proof.

LetV(G) ={c}u{y|l <i<n}and E(G) = {cv;|i =12,..,n}U{vy]i,j =12 ..,n}.

Graph ¢ = K, + K,, is isomorphic with graph K, ,. Based on Theorem 1.1, dim;;(K,,.,) =n +1—
1 = n. Thus dim;,(G) = n. ]

Theorem 24 Let G be a join graph Ky + S, where S, is a star graph with order n =2, then
dimy,(6G) =2
Proof.
Let V(€) = {c} U {v;]i = 01,..,n}and E(G) = {cv;|i = 0,1, ..,n} U {vou;|i =12,..., n}.
Suppose W = {c, vy}, then for every pair of adjacent vertices in V(G):
i. (c,v;) = c €l|v,clfori =0,1,....,n
ii. (vg, v;) = vy € Iy, vp] fori =12, ..,n
So, W is a local strong resolving set of G.
Next, we will prove that W is the local strong resolving set with the smallest cardinality. Take any
set W' C V(G) where |W’'| < 2, so there are three option of W' which are:
i If W ={c} th@ for a pair adjacent vertice (v, v;) = v; € I[vg,c] and vy € I[vy, c]. So
W' = {c}isnot a local strong resolving set of G.
ii. If W ={v,} thd for a pair adjacent vertice (c,v;) > v; € I[c,vy] and ¢ & I[v;, v]. So
W' = {vy} is not alocal strong resolving setof G.
iii. I W’ = {v,} where k = 1,2, ..., n[lhen for a pair adjacent vertice (c,vy) = v € I[c,vy] and
c & I[vg, vi]. So W' = {1} is not a local strong re@llving setof G.
Based on the argument above, W' where |W’| = 1 is not @local strong resolving set of G. Therefore,
W is the local strong resolving set with the smallest cardinality. Thus, dim,.(G) = 2. ]

3. Local strong metric dimension of G + H

In this section, we get the local strong metric dimension in the join of graphs. G + H, with & and H be
a connected graph. First, we discuss the properties of the local strong basis of & 4+ H. Local strong
basis is the local strong resolving set with the minimum cardinality and this cardinality is called the
local strong metric dimension.

Lemma 3.1 Let W = W, U W; be the local strong basis of G + H where Wy € V(G) and W, C
V(H), where [V(G)| = 2 and |V(H)| = 2, then dim3(G + H) = 3, with Wy = 0 and W, # 0.
Proof. Let V(6) ={w;li=1.2,...,n} and V(H) ={v;li =12, ...,m}. First. we assume that
Wi=0orW,=0. 1t Wy =@ then W= W,. So, for a pair of adjacent vertices (u,-,ui) —u; &
Iu;, vy ] and u; € Iu;, vy] where vy € W;. On the other hand, if W, =@ then W = W,. So. for a
pair of adjacent vertices (v,', ”j) = v; € I[vj, ug] and v; € I[v;, ug] where uy € Wy. Therefore,
Wi 0and W, = 0.
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Next, if we let W = {uy, vy} then for a pair of adjacent vertices (ui, vj) where u; adjacent with uy,
and v; adjacent with vy, applies v; € Ifu;, ug] and u; € I[v;,v,]. So. W with two elements is not the
local strong basis of G + H. Thus dim;4(G + H) = 3. ]

Lemma 3.2 Let the join of two connected graphs, G+ H, with |V(G)| = n and |V(H)| =m and
VIG+H)={wli=1,2,..,n}u{yli=1,2,..,m} then d(ui, uj] = d(vi, vj) =2 if u; is not
adjacent to wj and v; is not adjacent to v;. Furthermore, d(uf, I’j] =1.

Proof. Since V(6 +H) = {wli=1,2,.. . nju{pi=1,2,..,m} then uw; € E(G+ H). Thus
d(u{,vj) = 1. Next, since u; is not adjacent to %; and v; is not adjacent to v then d[u{, uj) #+ 1 and
d(v;,v;) # 1. Because diam (G + H) = 2 then d(u;,u;) = d(v;,v;) = 2. "

Using the lemma above, we get the local strong metric dimension of G + H which is stated in the
following theorem.

Theorem 3.1. Let G be a connected graph with order n = 2 and H be a connected graph with order
m = 2 then

dim (K, +G) +dim (K, + /) if diam(G) > 2 and diam(H) > 2

dim, (K, +G)+dim  (H) ifé'am(G)‘;‘Zand diam(H) <2

dim, (G+H)=1{ dim,(G)+dim (K, +H) i diam(G)<2and diam(H) > 2
it diam(G) =2 and diam(H) =2

dim,, (G) + dim () +1 or dim , (G)=dim, (H)=1

Proof. Let V(G) ={wli=12,..,n},V(H) ={yli =12,..,m}V(C+H)=V(G)UV(H), and
E(G+H)=E@GIVEH) U {wv;|li=12,..n;j=12,..,m}. Suppose W =W;UW, where
W, € V(G) and W, C V(H). In order to get the minimum cardinality of W, we get four cases which
dare:

Case 1.If diam(G) > 2 and diam(H) > 2

According to Lemma 3.2, d(lf.{,‘lfj) = d(v;, vf) = 2 if u; is not adjacent to u; and v; is not adjacent to
v;. In order to satisfy this lemma in this case, |W;| = dimy(K; + G) and |[W;| = dim(K,; + H). So,
dim; (G + H) = dim,,(K; + G) + dim; (K, + H) if diam(G) > 2 and diam(H) > 2.

Case 2.If diam(G) > 2 and diam(H) <2

According to Lemma 3.2, d(u;,uj) = d(v(-, vj) = 2 if u; is not adjacent to u; and v; is not adjacent to
vj. In order to satisfy this propertics in this case, |Wi| = dim(K; + 6) while |W;| = dims(H)
because diam(H) < 2. So., dimy (G + H) =dim;.(Ky + G) 4+ dim.(H) if diam(G)>2 and
diam(H) < 2.

Case 3. If diam(G) < 2 and diam(H) > 2

According to Lemma 3.2, d(u;,uj) = d(v(-, vj) = 2 if u; is not adjacent to u; and v; is not adjacent to
vj. In order to satisfy this properties in this case, |W;| = dim3(G) because diam(G) < 2 while
W5 | = dimyo(Ky + H). So. dim. (G + H) =dim(G) + dim;.(Ky + H) if diam(G) <2 and
diam(H) > 2.

Case 4.If diam(G) < 2and diam(H) < 2 ordim(G) = dim;(H) =1

Since diam(G) <2 and diam(H) <2 then |W;|=dim(G¢) and |W,|= dim;c(H). Assume
dim;(G + H) = dim,;;(G¢) + dim;;(H). Let u, € W, and v, € W,, then there is a pair of adjacent
vertice (uj, vj) where w; € Wy, vy € Wy, w; adjacent with g, and v; adjacent with vy that applies
u; & I[Uj,“uk],u'- ¢ "[L}'-Uk]-vj & Iuguy], and v; € I, v ]. So, dimy (G + H) # dim,(G) +
dim,;s(H). Following Lemma 3.1, dim; (G + H) = dim;s(G) + dim;;(H) + 1 if diam(G) < 2 and
diam(H) < 2 or dim;.(¢) = dim,(H) = 1. ]
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Using theorems in Section 1, 2, and 3 we can get the local strong metric dimension of G + H if G
and H are two of the following graphs, which are path (F,), cycle (C,,), complete graph (&},), and star
graph (S,). Since diam(P,) = 2, diam(C,,) = 2 for n > 5 and diam(K,,) = 1 < 2, diam(S,;,) = 2
then according to Theorem 3.1:

i dimy(F, + Pp) = dim(K; + By) + dimg(K; + By,) ifn,m > 5

i, dim;(B, 4+ Cpp) = dimys(Ky + B) +dimy (K, + C) itnm>5
il dim(B, + Kp) = dimyg (K + By) + dimy(Kpy,)
iv. dim(PB, + Sp) = dim(K; + B,) +dimis(Sp,)
v. dim(C, + Cp) = dim(Ky + C,) +dim(Ky +C) ifnm > 5
vi. dimy(Cp + Ky) = dim(K; + Cy) + dim5(Kyp)
vii.  dim(Cp + Sp,) = dim (K + C) + dimys(S,,)
vill.  dimys (K, + Kp,) = dimy (K,) 4+ dimy(K,,) + 1
ix. dimg(K, + Sp) = dim;(Ky,) + dim;(S;,) + 1
X. dim(S, + Sp) = dim(S,) + dim(Sp) + 1

4. Conclusion
In this paper we get the result regarding local strong metric dimension in the join of graphs G + H
which is:
dim (K, +G)+dim (K, + H) if diam(G) > 2and diam(H) > 2
dim (K, + G) +dim , (H) it é’am(G) > 2and diam(H) =2
dim, (G+H)=1 dim, (G)+dim (K +H) if diam(G)<2and diam(H) > 2
it diam(G) < 2and diam(H)<?2
ordim , (G) =dim , (H)=1
In the next rescarch, we suggest other researchers to develop the concept of local strong metric

dimension into another concept of metric dimension, for example local strong complement metric
dimension.

dim , (G)+dim  (H)+1
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