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Abstract 

 
Regression analysis aims to determine the relationship between response variables and 

predictor variables. There are three approaches to estimate regression curves, there 

are parametric, nonparametric, and semiparametric regression. In this study, the form 

of spline semiparametric regression curve estimator for longitudinal data assessed. 

Based on the estimator that be obtained by using Weighted Least Square (WLS) 

optimization applied to model electricity consumption in Madura by choosing a model 

for longitudinal data based on linear spline estimator with two knot. The good criterion 

of the model is using the GCV value, the coefficient of determination and the value of 

MSE. The best model is a model that has a high coefficient of determination and a small 

MSE value. This spline model has a determination coefficient value of 99,72911% and 

MSE 32,50458.          

Key words: Semiparametric Regression, Longitudinal Data, Spline, GCV (Generalized 

Cross Validation), Electricity Consumption in Madura. 

 

 

INTRODUCTION 

Regression analysis is a study used to 

determine the relationship pattern between 

response variables and predictor variables 

[1][2]. There are three approaches to determine 

the shape of the regression curve, there are 

parametric, nonparametric and semiparametric. 

In the parametric regression model it is 

assumed that the function patterns are known as 

linear, quadratic, cubic, polynomial, 

exponential, and many more. While the 

nonparametric regression model is assumed 

 
 

that the function pattern is not known like 

spline, neural network, kernel, polynomial, 

wavelet, histogram, MARS, Fourier series and 

others. If a regression model contains 

parametric components and other 

nonparametric estimated components then a 

semiparametric model [3][4]. 

In this research, we use semiparametric 

regression approach with linier estimator for 

parametric component and spline estimator for 

nonparametric component. Spline estimator has 

a high flexibility and ability to estimate data 

behavior that tends to differ at different 
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intervals and spline is a model providing 

superior and very respectable visually statistical 

interpretation [5]. Therefore, the spline method 

developed in the last decade. Pratiwi[6] 

introduce a semiparametric regression to 

estimate the average of age at first marriage in 

East Java with linier spline estimator. 

Budiantara [7] developed a spline estimator in 

nonparametric regression by using a base spline 

function family. Truncated spline estimator 

gives easier and simpler mathematical 

calculations than other estimator. 

Along with the development of data analysis 

in big data era, study about regression analysis 

requires not only cross section data that often 

be used, but also longitudinal data. 

Longitudinal data consists of cross section and 

time series data. Research with longitudinal 

data is more reliable in finding answers about 

the dynamics of change. Longitudinal data 

potentially provides more complete 

information. Another advantage of using 

longitudinal data, we can know the changes that 

occur in a subject, because the observations are 

repeated for each subject [8]. Some 

semiparametric regression studies that have 

used longitudinal data include spline [9], 

mixed-effects modeling [10] and kernel logistic 

[11].  

 

 

However, a study for longitudinal data with 

spline estimator is needed to accommodate 

repetitive data patterns, in this case seasonal, 

periodic, and seasonal trend combinations. 

This manuscript consists of four parts. This 

part is the first part which give explanation how 

important to determine spline estimator in 

semiparametric regression for longitudinal 

data. The first part also gives some motivation 

based on previous study. The second part 

presents study about longitudinal data structure, 

the form of spline estimator in semiparametric 

regression for longitudinal data generally and 

matrices equation. Based on matrices equation, 

Weighted Least Square (WLS) optimization is 

done to determine parameter vector estimator. 

This section is ended by present estimator form 

from spline in semiparametric regression for 

longitudinal data. An application case based on 

simulation data with spline estimator in 

semiparametric regression for longitudinal data 

is result and discussion in the third part. The 

fourth part gives conclusion based on the result.   

 

MATERIAL AND METHODS 

Consider a longitudinal data structure that 

be presented in Table 1 as follows: 

 

 

 

Table 1 Longitudinal data structure in semiparametric regression 

Subject 
Response 

Predictors 

Parametric Nonparametric 

𝒚𝒊𝒋 𝒙𝒊𝒋𝟏 … 𝒙𝒊𝒋𝒑 𝒕𝒊𝒋𝟏 … 𝒕𝒊𝒋𝒒 

1st Subject 

𝑦11 𝑥111 … 𝑥11𝑝 𝑡111 … 𝑡11𝑞 

𝑦12 𝑥121 … 𝑥12𝑝 𝑡121 … 𝑡12𝑞 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑦1.𝑛 𝑥1.𝑛.1 … 𝑥1.𝑛.𝑝 𝑡1.𝑛.1 … 𝑡1.𝑛.𝑞 

2nd Subject 

𝑦21 𝑥211 … 𝑥21𝑝 𝑡211 … 𝑡21𝑞 

𝑦22 𝑥221 … 𝑥22𝑝 𝑡221 … 𝑡22𝑞 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑦2.𝑛 𝑥2.𝑛.1 … 𝑥2.𝑛.𝑝 𝑡2.𝑛.1 … 𝑡2.𝑛.𝑞 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

nnd Subject 

𝑦𝑚1 𝑥𝑚11 … 𝑥𝑚1𝑝 𝑡𝑚11 … 𝑡𝑚1𝑞 

𝑦𝑚2 𝑥𝑚21 … 𝑥𝑚2𝑝 𝑡𝑚21 … 𝑡𝑚2𝑞 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑦𝑚.𝑛 𝑥𝑚.𝑛.1 … 𝑥𝑚.𝑛.𝑝 𝑡𝑚.𝑛.1 … 𝑡𝑚.𝑛.𝑞 
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Based on Table 1, there are pairs of data 

with form (𝑦𝑖𝑗, 𝑥𝑖𝑗𝑝, 𝑡𝑖𝑗𝑟), 𝑥𝑖𝑗𝑝 denotes 𝑝𝑡ℎ 

parametric predictor variable and 𝑡𝑖𝑗𝑟denotes 

𝑟𝑡ℎ nonparametric predictor variable for 𝑗𝑡ℎ 

observation in 𝑖𝑡ℎsubject. Here, 𝑖 = 1,2, … , 𝑛 

denote the number of subjects, 𝑗 = 1,2,… , 𝑛𝑖 

denote the number of observations for each 

subject, and 𝑝 represents the number of 

predictor for parametric component, 𝑟 represent 

the number of predictor for nonparametric 

component. Response variable for 𝑗𝑡ℎ 

observation in 𝑖𝑡ℎsubject is denoted by 𝑦𝑖𝑗 . The 

pairs of data that be presented in Table 1, 

follows semiparametric regression equation for 

longitudinal data. 

𝑦𝑖𝑗 = ∑ 𝛽𝑘𝑗𝑥𝑘𝑖𝑗

𝑝

𝑘=1

+ ∑ 𝑓𝑟

𝑅

𝑟=1

(𝑡𝑟𝑖𝑗)

+ 𝜀𝑖𝑗, 𝜀𝑖𝑗~𝑁(0, 𝜎2) 

(1) 

𝑓𝑟(𝑡𝑟𝑖𝑗) represents a regression curve. 

Random error for 𝑗𝑡ℎ observation in 𝑖𝑡ℎsubject 

is denoted by 𝜀𝑖𝑗  that independent, identically 

normal distributed with mean 0, and variance 

𝜎2. In this case, 𝑓𝑟(𝑡𝑟𝑖𝑗) approached by spline 

function as follows: 

𝑓(𝑡𝑟𝑖𝑗) = ∑ 𝛼𝑟𝑠𝑡𝑟𝑖𝑗
𝑠

𝑚

𝑠=1

+ ∑ 𝛾𝑙

𝑞

𝑙=1
(𝑡𝑟𝑖𝑗

− 𝐾𝑟𝑙)+

𝑚
 

(2) 

   Equation (2) is substituted to equation (1), the 

result is a semiparametric regression equation 

for longitudinal data that be approached by 

spline function as follows: 

𝑦𝑖𝑗 = 

∑ 𝛽𝑘𝑗𝑥𝑘𝑖𝑗

𝑝

𝑘=1

+ ∑{∑ 𝛼𝑟𝑠𝑧𝑟𝑖𝑗
𝑠

𝑚

𝑠=1

𝑅

𝑟=1

+ ∑ 𝛾𝑙

𝑞

𝑙=1
(𝑧𝑟𝑖𝑗

− 𝐾𝑟𝑙)+

𝑚
} 

(3) 

𝑦𝑖𝑗 = 

∑ 𝛽𝑘𝑗𝑥𝑘𝑖𝑗

𝑝

𝑘=1

+ ∑{∑ 𝛼𝑟𝑠𝑧𝑟𝑖𝑗
𝑠

𝑚

𝑠=1

𝑅

𝑟=1

+ ∑ 𝛾𝑙

𝑞

𝑙=1
(𝑧𝑟𝑖𝑗

− 𝐾𝑟𝑙)+

𝑚
} 

(4) 

with 𝑠 is the order of the spline, 𝑙 as the 

representation of the knot point, 𝑞 the number 

of knots. 𝐾𝑟𝑙 value of point knot to-l, 𝑚 is the 

number of spline order. For spline function with 

𝑚 = 1 is called linear spline function, while 

𝑚 = 2 is called quadratic spline function, and 

so on. In this case 

𝛼11, 𝛼12, … , 𝛼1𝑚 , 𝛼21, 𝛼22, … , 𝛼𝑅𝑚 , 𝛾1, 𝛾2, … , 𝛾𝑞 

are unknown parameters and their value is 

estimated, and truncated function (𝑧𝑟𝑖𝑗 −

𝐾𝑟𝑙)+

𝑚
 is defined as. 

(𝑧𝑟𝑖𝑗 − 𝐾𝑟𝑙)+

𝑚
= {

(𝑧𝑟𝑖𝑗 − 𝐾𝑟𝑙)
𝑚

, 𝑧𝑟𝑖𝑗 ≥ 𝐾𝑟𝑙

0, 𝑧𝑟𝑖𝑗 < 𝐾𝑟𝑙

 

Equation (3) can be presented to matrices form 

as follows: 

y = Xβ + Tη + ε; 𝜀~𝑁(0, 𝜎2𝐼)          (4) 

with 𝑦 = [𝑦1 𝑦2 … 𝑦𝑛]𝑇 , where 𝑦𝑖 =
[𝑦𝑖1 𝑦𝑖2 … 𝑦𝑖𝑛𝑖]𝑇as vectors that include 

response data. Vectors that include random 

error denoted by 𝜀 = [𝜀1 𝜀2 … 𝜀𝑛]𝑇, 

where 𝜀𝑖 = [𝜀𝑖1 𝜀𝑖2 … 𝜀𝑖𝑛𝑖]𝑇. 𝜀 is 

independent, identically normal distributed 

with mean 0, and variance 𝜎2𝐼, 𝐼  is an identity 

matrix. Vectors that include regression 

parameters denoted by 𝛽 =
[𝛽0 𝛽1 … 𝛽𝑛]𝑇, Vectors that include 

regression predictor denoted by 

X = [

1
1

𝑥11 ⋯
𝑥21 ⋯

𝑥1𝑝

𝑥2𝑝

⋮ ⋮ ⋱ ⋮
1 𝑥31 ⋯ 𝑥𝑛𝑝

] 

In this case, 𝑇[𝐾] is a matrix with structure 

as follows: 

𝑇[𝐾] = [

𝑇1[𝐾]

0
⋮
0

0
𝑇2[𝐾]

⋮
0

…
…
⋱
…

0
0
0

𝑇𝑝[𝐾]

] 

Where 

 

( ) ( )

( ) ( )

( ) ( )

1 1

11 1 11 1 1 1 1 1 1

1 1

21 21 21 1 1 2 2 2 1

1 1

1 1 1 1 1 1

i

i i i i i i

mmm m

i in i i i p i p i p ip

mmm m

i i i i i p i p i p ip

i

m m
m m

in in in i in p in p in p ip

t t t K t t t K

t t t K t t t K
T K

t t t K t t t K

+ +

+ +

+ +

 − −
 
 

− − =
 
 
 

− −  

  

𝜂 = [𝜂1 𝜂2 … 𝜂𝑛]𝑇 

where 

( )1 1 1 1 1 1 1 1i i mi i qi ir mir ir qir       =η   
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Weighted Least Square (WLS) optimization 

is done by using matrices form that be 

presented in equation (4). The form of WLS 

optimization is presented as follows: 

 

( ) ( ) ( )( ) min minR W  = 
T

β,η β,η
β,η y - Xβ -Tη y - f x, t   (5) 

with 

 𝑊 =

[
 
 
 
 
 

1

σ1
2 0 ⋯ 0

0
1

σ2
2 ⋯ 0

⋮
0

⋮
0

⋱ ⋮

⋯
1

σp
2]
 
 
 
 
 

                   (6) 

as a weighted matrix 

WLS optimization to get estimator for 𝛽, is 

called  �̂�, can be done by expanding right side 

in equation (5), so that 

𝑅(β, η) = {(y − Xβ − Tη)TW(y − f(x, t))} =

0 that can be expanded as follows: 

𝑅(β, η) = 𝑦𝑇𝑊𝑦 − 2𝑦𝑇𝑊
− 2𝜂𝑇𝑇𝑇𝑊𝑦
+ 2𝛽𝑇𝑋𝑇𝑊𝑇𝜂
+ 𝛽𝑇𝑋𝑇𝑊𝑋𝛽
+ 𝜂𝑇𝑇𝑇𝑊𝑇𝜂 

(7) 

For determining �̂� derivation process is 

done with 𝑅(β, η) respect to 𝛽 with requirement 

right side 𝑅(β, η) equals to zero vector. The 

result is an estimator for parameter vector as 

follows: 

�̂� = (𝑋𝑇WX)−1{𝑋𝑇𝑊𝑦 − 𝑋𝑇𝑊𝑇�̂�}           (8) 

with similar procedure to get an estimator from 

parameter 𝜂 so that it is obtained 

�̂� = (𝑇𝑇𝑊𝑇)−1{𝑇𝑇𝑊𝑦 − 𝑇𝑇𝑊𝑋�̂�}      (9) 

Estimator in the equation (8) and equation 

(9) not yet parameter free, so an estimator must 

be searched that is free from parameters with 

mutual substitution. If equation (9) is 

substituted to equation (8), the result is 

𝛽 ̂ = 𝑀〖(𝑋^𝑇 𝑊𝑋)〗
^(−1) {𝑋^𝑇 −

𝑋^𝑇 𝑊𝑇(𝑇^𝑇 𝑊𝑇)^(−1) 𝑇^𝑇 }𝑊𝑦  

= 𝐵(𝐾)𝑦 

(10) 

where  

𝐵(𝐾) = 𝑀(𝑋𝑇𝑊𝑋)−1{𝑋𝑇

− 𝑋𝑇𝑊𝑇(𝑇𝑇𝑊𝑇)−1𝑇𝑇}𝑊 

with  

𝑀
= (𝐼 − (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑇(𝑇𝑊𝑇)−1𝑇𝑇𝑊𝑋)−1 

if equation (9) is substituted to equation (8), the 

result is 

�̂�
= 𝑁(𝑇𝑇𝑊𝑇)−1{𝑇𝑇

− 𝑇𝑇𝑊𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇}𝑊𝑦 

= 𝐶(𝐾)𝑦 

(11) 

where 

𝐶(𝐾) = 𝑁(𝑇𝑇𝑊𝑇)−1{𝑇𝑇

− 𝑇𝑇𝑊𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇}𝑊 

with 

𝑁 = (𝐼 − (𝑇𝑇𝑊𝑇)−1𝑇𝑇𝑊𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑇)−1 

Based on equation (10), a weighted matrix 

gives affect for determining �̂�. Similar with 

Ordinary Least Square (OLS) optimization 

method, WLS is not bound with an error 

distribution. A weighted matrix plays a role in 

the smoothing process for nonparametric 

regression with longitudinal data (G, 1990).  

The spline estimator in semiparametric 

regression for longitudinal data is presented by 

equation (10) as follows: 

�̂�𝑖𝑗 = ∑ �̂�𝑘𝑗𝑥𝑘𝑖𝑗

𝑝

𝑘=1

+ ∑ {∑ �̂�𝑟𝑠𝑧𝑟𝑖𝑗
𝑠

𝑚

𝑠=1

𝑅

𝑟=1

+ ∑ �̂�𝑙

𝑞

𝑙=1
(𝑧𝑟𝑖𝑗

− 𝐾𝑟𝑙)+

𝑚
} + 𝜀𝑖𝑗  

(12) 

Equation (13) can be presented to matrix 

equation as follows: 

�̂� = 𝑋�̂� + 𝑇�̂�           (13) 

Equation (10) and equation (11) is substituted 

to equation (13), the result is as follows: 

𝑦 ̂ = 𝑋𝛽 ̂ + 𝑇𝜂 ̂ = 𝑋𝐵(𝐾)𝑦 + 𝑇𝐶(𝐾)𝑦  

= 𝐷(𝐾)𝑦 

(14) 

𝐵(𝐾) is a hat matrix for parametric 

components. 𝐶(𝐾) hat matrix for 

nonparametric components. Matrix hat for 

semiparametric regression model with spline 

approach is denoted by 𝐷(𝐾).𝐾 = (𝐾1, … , 𝐾𝑞) 

shows the knot point contained in the matrix 

𝐷(𝐾). 

 The goodness indicators that often be used 

in semiparametric regression is Mean Square 

Error (MSE), Generalized Cross Validation 

(GCV), and determination coefficient (R2). All 

of goodness indicators can be applied to splne 
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estimator in semiparametric regression for 

longitudinal data.  

In spline estimator in semiparametric 

regression for longitudinal data, an optimal 

knots point (𝐾) is determined. In determining 

optimal knots point can be used GCV formula. 

GCV often be used because have 

asymptotically optimal properties [9]. For 

determining an optimal knots point can be seen 

based on the smallest GCV value. The formula 

of GCV given as follows: 

GCV(𝐾) =
MSE(𝐾)

(𝑁−1𝑡𝑟𝑎𝑐𝑒(𝐼 − 𝐷(𝐾)))2 

with 

MSE (𝐾) = 𝑁−1𝑦𝑇(𝐼 − 𝐷(𝐾))
𝑇
𝑊(𝐼 −

𝐷(𝐾))𝑦. 

By choosing of an optimal knots point will 

give impact to produce a determination 

coefficient with high value, or approximate to 

100%.  The determination coefficient formula 

given as follows: 

 R2 =
(�̂� − �̅�)𝑇(�̂� − �̅�)

(𝑦 − �̅�)𝑇(𝑦 − �̅�)
   ;   0 ≤  R2 ≤ 1 

with �̂� is a vector that include of estimation 

result for all of subjects, and �̅� is a vector that 

include mean value for each subject. The best 

model that can be used for prediction met he 

goodness of criteria. The goodness of criteria is 

the smallest GCV value for an optimal knots 

point, the smallest mean square error (MSE) 

value, and the big of determination coefficient 

value. 

In this part, study about spline estimator in 

semiparametric regression for longitudinal data 

is applied in electricity consumption data. The 

electricity consumption data consists of one 

response, and two predictors. Response 

variable represents monthly peak load denoted 

by 𝑦. The first predictor represents monthly 

current denoted by 𝑥, the second predictor 

represents observation time denoted by 𝑡. There 

are three subjects in this application, each 

subject is observed for 12 months. The data 

analysis procedure uses spline estimator in 

semiparametric regression for longitudinal data 

is given as follows: 

1. Input pairs of data (𝑦𝑖𝑗, 𝑥𝑖𝑗 , 𝑡𝑖𝑗), 𝑖 =

1,2, … , 𝑛, and 𝑗 = 1,2, … , 𝑛𝑖. 

2. Presenting scatter plot for every pairs of 

data (𝑦𝑖𝑗, 𝑥𝑖𝑗) and (𝑦𝑖𝑗 , 𝑡𝑖𝑗). 

3. Determining an optimal knots point 

based on the smallest GCV. 

4. Determining goodness of indicators for 

selectedknots point. 

5. Determining the elements values from �̂� 

and �̂� based on equation (10) and 

equation (11) for selected knots point. 

6. Determining spline estimator in 

semiparametric regression for 

longitudinal data based on equation 

(12). 

7. Presenting plot between response data, 

and estimator data. 

 

RESULT AND DISCUSSION 

Open Source Software (OSS) R is used to 

analysis based on spline estimator in 

semiparametric regression for longitudinal 

data. The scatter plot that shows how the pattern 

of data for the Sampang Regency is presented 

in Figure 1. The scatter plot that shows how the 

pattern of data for the Pamekasan Regency is 

presented in Figure 2. The scatter plot that 

shows how the pattern of data for the Sumenep 

Regency is presented in Figure 3. 

 

 
(a) 

 
(b) 

Fig 1. Scatter plot for the Sampang Regency, 

(a) Scatter plot between response and 

the first predictor, (b) Scatter plot 
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between response and the second 

predictor. 

 
(a) 

 
(b) 

Fig 2. Scatter plot for the Pamekasan Regency, 

(a) Scatter plot between response and 

the first predictor, (b) Scatter plot 

between response and the second 

predictor 

 

(a) 

 

(b) 

Fig 3. Scatter Plot for the Sumenep Regency, 

(a) Scatter plot between response and 

the first predictor, (b) Scatter plot 

between response and the second 

predictor 

Based on Figure 1, Figure 2, and Figure 3 

part (a) the pattern shape is known, so Figure 1, 

Figure 2, and Figure 3 part (a) includes the 

parametric component. Based on Figure 1, 

Figure 2, and Figure 3 part (b) there are 

unspecifict trend pattern between response and 

predictor, so Figure 1, Figure 2, and Figure 3 

part (b) includes a nonparametric component. 

Time series plot for each variable can present 

data pattern more clearly. However, we use the 

data to apply spline estimator in semiparametric 

regression for longitudinal data.  

Parameter estimates in this study depend on 

the optimum knot value obtained by 

considering the minimum GCV value. An 

overview of the selection of optimum knot 

points obtained from the minimum GCV will be 

shown in Table 2 

Table 2. Comparison of GCV value and 

determination coefficient 

Knots 

GCV Value 

Minimum 

Determination 

Coefficient 

1 2733,23 89,87586 

2 73,13531 99,72911 

 

Based on Table 2, the minimum GCV value 

was obtained from 2 knots with a minimum 

GCV value of 73.13531 with knots for the 1st, 

2nd, and 3rd subjects respectively were 

1616,263; 1643,622; 1964,132; 1993,104; 

1590,769; 1621,570. Then the parameter 

estimation is obtained for each subject as well 

as the estimated model which will be shown in 

Table 3 

Table 3. Parameter estimation 

Subjek Parameter 
Parameter 

Estimation 

Sampang 

𝛽0 0,033 

𝛽1 0,147 

𝛽2 0,288 

𝛼 -16,222 

𝛾 16,078 

Pamekasan 

𝛽0 0,025 

𝛽1 0,581 

𝛽2 0,281 

𝛼 -16,094 

𝛾 15,838 

Sumenep 

𝛽0 0,024 

𝛽1 -0,055 

𝛽2 0,279 

𝛼 -12,482 

𝛾 12,248 
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Based on the optimal knot points and 

parameter estimates obtained for each subject, 

the truncated spline semiparametric regression 

model for longitudinal data can be written as 

follows: 

Model estimates for the 1st subject are: 

�̂�1𝑗 = 0,033 + 0,147𝑥1𝑗1

+ 0,288𝑡1𝑗1

− 16,222(𝑡1𝑗1

− 1616,263)+

+ 16,078(𝑡1𝑗1

− 1643,132)
+

 

(15) 

Model estimates for the 2 nd subject are: 

�̂�2𝑗 = 0,025 + 0,581𝑥2𝑗1

+ 0,281𝑡2𝑗1

− 16,094(𝑡2𝑗1

− 1964,132)+

+ 15,838(𝑡2𝑗1

− 1993,104)
+

 

(16) 

Model estimates for the 3 rd subject are:  

�̂�3𝑗 = 0,024 − 0,055𝑥3𝑗1

+ 0,279𝑡3𝑗1

− 12,482(𝑡3𝑗1

− 1590,769)+

+ 12,248(𝑡3𝑗1

− 1621,57)
+

 

(17) 

The estimation of this model produces a 

coefficient of determination of 𝑅2 of 99.72911 

and MSE of 32.50458. 

After obtaining the spline semiparametric 

regression model for longitudinal data in each 

subject. Next is the interpretation of the model. 

Interpretation is done by making the translation 

into a truncated form on each subject to 

facilitate predictions of electrecity 

consumption. Equation (15) for the first 

subject, Sampang can be truncated as follows: 

�̂�1𝑗 = 

{

0,288𝑡1𝑗1𝑡1𝑗1 < 1616,263

−15,934𝑡1𝑗1 + 26219,018  1616,263 ≤ 𝑡1𝑗1 <

0,144𝑡1𝑗1 − 26418,276  𝑡1𝑗1 > 1643,132
1643,132 

 

(18) 

Based on the truncated equation (18) model 

for Sampang Regency, several interpretations 

can be determined, namely when the average 

monthly electric current in Sampang is below 

1616,263 and if there is an increase in the 

average monthly flow of 1 unit then the peak 

load tends to increase 0.288 knots. The same 

pattern occurred when the monthly average 

flow of Sampang Regency between 1616,263 to 

1643,132, then the peak load tended to decrease 

by 15,934 knots times with the sum of values of 

26219,018. If the current in Sampang Regency 

is 1643.132 or more, then the peak load tends to 

change by 0.144 knots by reducing the value of 

26418.276. A similar interpretation method 

applies to the other two subjects. Following are 

given truncated models of equations (16) and 

(17), respectively for second and third subjects. 

The truncated model of equation (16) for 

Pamekasan Regency is 

�̂�2𝑗 =

{

0,281𝑡2𝑗1𝑡2𝑗1 < 1964,132

−15,813𝑡2𝑗1 + 31610,74  1964,132 ≤ 𝑡2𝑗1 <

0,025𝑡2𝑗1 − 31566,781  𝑡2𝑗1 > 1993,104
1993,104  

The truncated model of equation (17) for 

Sumenep Regency is 

�̂�3𝑗

= {

0,279𝑡3𝑗1𝑡3𝑗1 < 1590,769

−12,203𝑡3𝑗1 + 19855,979  1590,769 ≤ 𝑡3𝑗1 <

0,045𝑡3𝑗1 − 19860,989  𝑡3𝑗1 > 1621,57
1621,57 

 

CONCLUSION  

The model the relationship between 

indicators in the field of electrecity 

consumption that is packaged according to 

longitudinal data structures can be done by 

using a spline semiparametric regression 

estimator for longitudinal data. Based on the 

result of the semiparametric spline regression 

estimator for longitudinal data and the concept 

of the goodness of the model, the model for the 

best electricity consumption indicator is a linier 

spline model with two knots. The result based 

on data analysis gives satisfied goodness of 

indicator, like the small MSE, and the high 

value of determination coefficient. This spline 

model has a determinition value of 99,72911% 

and MSE 32,50458. 
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Table 1. Testing data 

RESULT AND DISCUSSION 

This chapter discusses the results of the 

modified LMKNCN algorithm in doing certain 

tests. In the evasion direction avoidance tests, 

the features used in training data [17] is first 

discussed, as well as accuracy testing. Then, the 

algorithm is tested in quadcopter flight plans 

that must reach its target point with static and 

dynamic obstacles in the way.  

The LMKNCN classification features used 

in this research is the dimensions of the obstacle 

against the quadcopter’s position. The 

dimensions feature data is processed into 

deviance distance data. This feature data 

consisted of 4 parameters, that of upper span 

ℎ𝑢, left span ℎ𝑙, right span ℎ𝑟, and lower span 

ℎ𝑑. The deviance distance data 𝛿 consisted of 4 

parameters, that of left, right, up and down 

deviances. Table 2 shows the feature data used 

in cluster training data, Table 3 shows the 

obstacle training data, and Table 4 shows the 

testing data, all of which resolves as correct.  

The simulation tests used a computer with 

Intel Core i3 CPU of 1.70 GHz and 4 Gb RAM. 

The tests result in an accuracy of 97.5% (Table 

4). The learning process between training and 

testing data required a computation time of 

0.142341 seconds.  

Case 1 


