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ABSTRACT

The critical step in the sequential extraction of fucoidan and alginate from
brown algae is acid treatment, sifff it noticeably affects physicochemical
properties of the both components. This study aimed to investigate the effects
of acid treatment on the multiple respons@of alginate and fucoidan yield from
brown alga Sargassum cristaefolium. Box Behnken Design (BBD) from
Response Surface Methodology (RSM) was established to understand the
effects of temperature, time and pH in acid trliment on the fucoidan yield and
multiple-response alginate as follows: yield, intrinsic viscosity, and molecular
weight. The experimental results revealed that temperature, time and pH
significantly affected fucoidan yield, alginate yield, intrinsic viscosity, and
molecular weight of alginate. The optimum acid treatment was found at
temperature 33.75 °C, time 58.22 min, and pH 3.07, resulting in fucoidan yield
1.224+0.068%, alginate yield 29.85+0.24%, intrinsic viscosity 409.72+8.23
ml/g and molecular weight 194.08+3.77 kDa with the desirability value 0.805.

1. Introduction

Brown algae is inarguably one of important
sources for polysaccharides, e.g. fucoidan and
alginate, [Jith different physicochemical
properties (Rioux ef al., 2007; Ale et al. 2011a;
Torres et al., 2007; Draget and Taylor, 2011).
Alginate derived from brown algae is thermo-
stable component, which is widely applied in a
variety of industries as thickener, emulsifier,
stabilizer, and gelling agent (Poncelet et al.
1999; Gomez et al. 2009; Rahelivao et al. 2013;
Sellimi et al. 2015), while it is also massively
used in food supplementation, pharmaceutical
industry (producing slow-release
characteristics), and antitumor (Sousa et al.
2007; Moebus et al. 2012; Jensen et al. 2012).
Fucoidan isolated from brown seaweed is also
reported capable of exerting beneficial health
effects mainly on antitumor, anticancer, anti-
inflammation, and immunomodulator (Asker et
al., 2007; Ye et al 2008; Kim et al. 2010; Ale
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et al. 2011b; Costa et al., (2011).

Although seaweed is industrially important,
the processing has been currently hindered by
some serious constraints, mainly related to low
efficiencies and huge amount of waste. To deal
with this, the use of integrated biorefinery for
producing various products could gradually
eliminate the mentioned constraints, while also
rising economic benefits (Lorbeer et al. 2015).
Such biorefinery processing is greatly possible
for brown algae due to presence of fucoidan and
alginate with existing or future potential
applications (Jung et al. 2013; Ruiz et al. 2013).
The parallel processing technology for
producing fucoidan and alginate from brown
algae could be a great opportunity in biorefinery
industry (Sugiono and Ferdiansyah, 2019).

In general, acid treatment was applied to
extract fucoidan and alginate from brown algae.
It enables to induce destruction of cell walls,
hydrogen bond cleavage, and solubilization of
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extracted fucoidan (Kim et al. 2010; Ale et al.
2012; Ermakova et al. 2011; Sugiono et al.
2014), while the acid also simultaneously plays
role in converting alginate-salts to alginate-
acids, avoiding them from production of
insoluble contaminants (Myklestad, 1968;
Arvizu et al. 2007). During extraction of
alginate, acid treatment serves to remove
contaminants  (fucoidan, laminaran  and
polyphenol) and produce alginate-acids which
then increase their extractability using sodium
carbonate (Hernandez-Carmona et al. 1999;
Torres ef al. 2007; Gomez ef al. 2009; Sellimi
et al. 2015; Rahelivao ef al. 2013; Fertah ef al.
2014; Sugiono ef al. 2019a). Based on this
mechanism, acid treatment becomes a basic
principle for sequential biorefinery in extraction
of fucoidan and pre-extraction of alginate.

Previous  studie§) have reported the
application of acid treatment for sequential
extraction of fucoidan and alginate with regard
to characterization of the components (Rioux et
al. 2007), but their works were not exclusively
directed to biorefinery processing. Therefore,
the use of acid treatment with optimum levels
allows us to perform biorefinery processing for
extracting fucoidan and alginate from brown
seaweed, resulting in high yield and quality. In
low acid concentration, the yield was also poor;
on the other hand, the excessive level of acid
would degrade alginate structure, causing
reduction of its viscosity. This present work
aimed to determine optimum level of pH,
temperature, and time in the acid treatment for
isolating fucoidan and alginate from brown alga
Sargassum  cristaefolium with regard to
biorefinery industry.

2gMaterials and methods
2.1. Materials and reagents

Brown algae Sargassum cristaefolium was
obtained from Poteran Island in Sumenep,
Madura, and collected in Desember 2018.
Chemicals (distilled water, HCl 37%, NaOH,
ethanol 99.8%, Na:COs) for extraction and
analyses were analytical grade.
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2.2. Sequential extraction of fucoidan and
alginate

2.2.1. Pre-treatment of brown algae

Brown algae was washed using fresh water,
dried, ground, and sieved at 60 mesh (Sugiono
et al. 2014). The powder was then soaked in a
solution containing ethanol: CHCls: distilled
water (4:2:1), stirred overnight to remove
phenol and protein. Last, the mixture was
washed and dried at 45 °C for 6 h (Ale et al.
2012).

2.2.2. Fucoidan extraction

The pre-treated algae (7.5 g) was added
with HCI (1:20, b/v; pH 1-5) and incubated in a
shaking waterbath at 25 — 45 °C for 30 — 90
min. Subsequently, vacuum filtration was used
to separate residue (A) from filtrate. The filtrate
was mixed with ethanol 96% (1:2, v/v) and left
overnight at room temperature until producing
precipitate. Fucoidan was collected following
centrifugation at 7000 rpm for 10 min, and
dried using vacuum dryer at 45 °C for 18 h (Ale
et al. 2012).

2.2.3. Alginate extraction

Residue A (collected from previous
process) was added with Na;COs 2.5% (1:20,
b/v) and incubated in a shaking waterbath at 70
°C for 2 h, then followed by filtration to collect
filtrate. The filtrate was centrifuged at 5000 rpm
for 10 min, mixed with ethanol 96% (1:2, v/v)
and filtered after incubation for 2 h. The
alginate was washed twice using ethanol 70%
and 96%, resifktively, filtered and dried using
vacuum dryer at 45 °C for 24 h. Ultimately, the
dried alginate was ground and sieved at 60
mesh (Gomez et al. 2009).

2.3.g8xperimental design

Box-Behnken Design in Response Surface
Methodology (RSM) was used, consisting of 3
variables, i.e. temperature (X;: 25, 35, 45°C),
time (X2: 30, 60, 90 min), and pH (X3: 1, 3, 5).
The coded (+1 and 0) and actual of independent
variables used in this experiment was presented
in Table 1. A totally amounting of 15
experimental runs with three replicates in center
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point (Table 2) (Montgomery, 2005). The center
points were fixed according to preliminary
study.

Regression analysis and model adjustment
athe second order was carried ouﬁls follows:

Y:ﬂo+iﬂfxl.+iﬁﬁxf+z ZZﬂﬁxl.xj (1)

where Y = response, fis = intercept coefficient,
Bi. Pi, pii = regression coefficient for linier,
quadratic, and interaction, and x;, x;, = variables

of pH and temperature, and time (/).

The data analysis was performed in Design-
Expert version 7 software in order to find
correlation coefficient (R) and determination
coefficient (R?), while the significance was set
at P = 0.05. Accuracy between validation and
estimated data by Design Expert was compared
using paired sample t-test in Minitab 16
software.

Table 1. Coded and actual of independent variables

Independent Symbols Variables
variables Coded Actual

Temperature (°C) X -1 25
0 35
+1 45
Time (min) X2 -1 30
0 60
+1 90

pH X3 -1 1

0 3

+1 5

Table 2. Box-Behnken Design from RSM and responses

No Actual variables Responses
Temperature | Time | pH | Fucoidan Alginate Intrinsic Molecular
(°O) (min) yield yield viscosity weight
(%) (%) (ml/g) (kDa)
1 35 90 1 1.50 31.12 103.15 45.42
2 45 60 1 0.50 29.90 140.78 65.86
3 25 90 3 1.10 26.21 258.20 118.79
4 45 60 5 0.10 27.23 285.22 134.55
5 25 60 1 1.20 28.10 246.60 116.12
6 35 30 5 0.12 26.32 183.44 86.72
7 45 30 3 0.15 26.80 170.11 78.79
8 25 30 3 0.05 26.48 267.00 122.98
9 25 60 5 0.11 26.13 222.95 101.99
10 35 90 5 0.13 26.74 223.00 104.44
11 45 90 3 1.30 29.98 191.00 89.66
12 35 30 1 1.20 29.85 283.00 130.62
13 35 60 3 1.21 29.80 400.11 189.57
14 35 60 3 1.32 29.54 532.07 255.29
15 35 60 3 1.12 30.21 407.00 192.94
Pred. 33.75 58.2213.07 | 0.71+0.43% | 29.63+0.72" | 448.8467.24° | 212.6+32.26¢
Valid 33.75 58.22 1 3.07 | 1.2240.068" | 29.85+0.24" | 409.72+8.23¢ | 194.08+3.77¢
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2.4. Characterization
2.4.1. Yield

Yield was determined according to ratio of
alginate or fucoidan weight over initial weight
of brown algae, then multiplied by 100%
(Torres et al. 2007).

2.4.2. Intrinsic viscosity

For alginate viscosity, viscometer capillary
Ubbelohde (Canon, USA) with capillary
diameter of 0.56 mm was employed at 25 °C.
Alginate solution was made by dissolving 30
mg of alginate in 10 ml of aquabides, stirred for
5 h at room temperature (25 °C) and diluted at
serial concentration of 0.05-0.3 g/dL (Chee et
al. 2011). Relative viscosity n was determined
according to ratio of flow time t over flow time
for solvent to. Meanwhile, intrinsic viscosity [n]
was calculated as follows:

Relative viscosity, ﬂ_T (2)

Specific viscosity, nsp=n-1 (3)

Reduction viscosity, %E= 'lf (4)

Intrinsic viscosity, [11]=]ir%%“3 (5)
2.4.3. Molecular weight

Molecular weight of alginate was

determined according to relationship between
averaged intrinsic viscosity and molecular
weight. Calculation of molecul@ weight
referred to Mark-Houwink, where k = 0.023
dL/g and a = 0.984 (Clementi et a/. 1998). In
this case, [n] represented intrinsic viscosity
(dL/g), while My, represented molecular weight
(kDa).

[n]=kM, (6)

3. Results and discussions
3.1. Yield of fucoidan

The results showed that all studied variables
showed linear relationship to the yield of
fucoidan (Figure 1). The yield seemed to raise
as increase in temperature, time, and acidity.
The highest fucoidan extract (1.5%) was
obtained at temperature 45 °C, time 90 min, and
pH 1. This is in accordance with previous result
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reported by Ale et al. (2012), finding that a high
temperature causes swelling of the algae cell
wall due to thermal expansion, resulting in
enhancement of fucoidan  extractability
(Sugiono ef al. 2014). Meanwhile, the use of
low pH and longer acid treatment enabled to
soften cell wall of the algae, which increased
solubility of fucoidan in HCI (Silva et al. 2015).
Rodriquez ef al. (2011) reported that the
increase in temperature and time could improve
extractability of fucoidan, then it gradually
decreased after reaching the optimum level.
Lorbeer et al. (2015) stated that fucoidan yield
was higher when extracted under higher
temperature and longer extraction time, while
the low pH could destroy fucoidan structure.

3.2. Yield of alginate

In this present work, we found that all the
variables demonstrated quadratic effects on the
alginate yield (Figure 2), ranging from 26.21 —
31.12%. This was similarly reported by Silva et
al. (2015) and Sugiono ef al. (2019a). The yield
showed an increase with the increased
temperature, longer time, and reduced pH
during pre-extraction with acid treatment. This
is understandable since an increase in pH level
and time could enhance conversion of Ca/H
ions, thereby improving the solubility of
alginate in Na>COs;. In addition, higher
temperature and longer exposure to acid
treatment noticeably contributed to formation of
porous and softened structure in surface of the
cell walls, which in turn also enabled to
increase extractability of alginate (Sugiono et
al. 2018b). Fertah er al. (2014) asserted that
alginate extract was relatively increased with
the increasing extraction temperature, after this
condition it was continuously to decrease due to
a degradation of alginate chain molecules.
Nevertheless, pre-extraction of algae using acid
treatment at pH 5 showed a contrary result. The
exchange of Ca/H ions was logarithmically in
proportional with acid concentration and pre-
extraction time (Mykleasted er al. 1968,
Lorbeer et al. 2015).
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Fucoidan yield (%)

Fucoidan yield (%)

Fucoidan yield (%)

~—

: - — 3.00
A: Temperature 3000 200 C:pH

25.00 1.00
Figure 1. Response surface plots of fucoidan yields from brown algae Sargassum cristaefolium as a
function of temperature and time (A), pH and time (B), temperature and pH (C).

T 303 2 a2
o 28.275 3 20775
= Q2
5] =
S, 2825 o B%
2 27225 2 2802
c o
5 262 < 5
< T T -
90.00 ——" 45.00 500 —" 45.00
5.00 4000 400" _,é;'n’n’iﬂ 00
6000 - ——"35.00 00— 35,
" ) — ] : 200 “—_—" 30.00 A-
B: Time 4500, ot 0% A: Temperature C:pH 100 2500 " A: Temperature

Alginate yield (%)

500 I 80,00
400 7500
300 "= _—"60.00
C:pH 200 —_— 4500 .
P 1,00 30.00 B: Time

Figure 2. Response surface plots for alginate yield from brown alga Sargassum cristaefolium as a
function of temperature and time (A), pH and temperature (B), pH and time (C).
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Figure 3. R@fponse surface plots for alginate intrinsic viscosity from brown alga Sargassum
cristaefolium as a function of temperature and time (A), pH and temperature (B), pH and time (C).
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as a function of temperature and time (A), pH and temperature (B), pH and time (C).
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3.3. Intrinsic viscosity of alginate

The results demonstrated that difference in
temperature, time, and pH showed quadratic
effect on intrinsic viscosity of alginate (Figure
3). An increase in temperature, time, and pH
resulted in a growing viscosity, while it tended
to be lower after reaching optimum condition.
In this present work, intrinsic viscosity reached
103.15 ml/lg to 446.39 ml/g, which was
relatively similar to that reported by Torres et
al. (2007), Fenoradosoa et al. (2010) and
Rahelivao et al. (2013). The incrementation of
alginate intrinsic viscosity was found at pH 3
and time 60 min; however, it showed a decrease
at pH | and pH 5 in 30 — 90 min. The rising
viscosity is associated with the increasing
conversion of Ca/H ion exchange occurring at
pH 3 within 30 — 90 min, thus improving the
extractability of long-chain alginate.

Additionally, pre-extraction carried out at
pH 5 seemed to be ineffective in reducing
phenol compounds, in which their existence
differently contributed to the increasing
cleavage of main polymer chains of alginate
during extraction in alkaline condition
(Wedlock and Fasihuddin, 1990). Jayasankar
(1996) reported that viscosity of alginate was
higher after treated with acid compared to that
without acid treatment. Meanwhile, extraction
at pH 1 could induce degradation of alginate
polymer chains (Haug ef al. 1963; Smidsrod et
al. 1969). Furthermore, the increase in
temperature and time during acid treatment
would induce cell wall to soften and swell,
which remarkably enhanced the extractability of
long-chain molecules of alginate (Sugiono and
Ferdiansyah, 2018).

3.4. Molecular weight of alginate

Present work successfully found that
concentration of alginate with high molecular
weight tended to increase with a rising
temperature, time and acidity (Figuf 4). This is
augmented by previous studies reported by
Torres ef al. (2007) and Lorbeer ef al. (2015). It
is noteworthy that pH levels in pre-extraction
phase strongly caused positive effects on the
incrementation of molecular weight, occurring
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up to pH 3 and time 60 min, although it was
then declined at pH 1 and pH 5 within 30 — 90
min. At condition of pH 3, temperature 35 °C
and time 60 min, the conversion of Ca/H ions
was higher, thus escalating the solubility of
alginate in Na;COs. Myklestad (1968) found
that Ca/H ion exchange occurred at a higher
level with the increase in acidity and time
during acid treatment. The higher temperature
and longer period of acid treatment was
responsible for degradation of cell wall,
ultimately contributing to enhanced level of
extracted alginate. Sugiono et al. (2018a)
mentioned that the extraction of high molecular
weight alginate could achieve more desirable
results when carried out at high temperature,
longer time, and low pH during pre-extraction
acid treatment, after that, it tended to attenuate
due to destruction of alginate polymer chains.
At low pH, the polymer chain of alginate was
destroyed because of f-elimination and
hydroly@g reaction which was catalyzed by
proton (Hernandez-Carmona et al. 1999; Silva
et al. 2015). However, at pH 5, molecular
weight of alginate was reduced due to oxidative
depolymerization  triggered by  phenolic
compounds through auto-oxidation process to
release hydrogen peroxide; this free radical was
capable offfleaving main chain of alginate
molecules (Smidsrod et al. 1963). Wedlockgind
Fasihuddin (1990) also reported that acid
treatment at pH close to 7 seemed to be less
effective in phenolic compound removal; as
commonly known, the component was not
desired since it promoted degradation of
alginate polymers in alkaline extraction stage.
Furthermore, previous study found that
molecular weight of alginate was higher at acid
treatment of pH 3.5 compared to that extracted
at pH 5 (Lorbeer et al. 2015).

3.5. Model accuracy

Box Behnken Design was used to evaluate
the effects of temperature, time, and pH on
yield (fucoidan and alginate), intrinsic viscosity,
and molecular weight of alginate. The second
order polynomial for biorefinery of sequential
extraction was presented in Table 3.
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The model accuracy on each response was
evaluated using model significance, lack of fit,
and correlation coefficient which are presented
in Table 3. The acceptable model was achieved
according to following criteria, i.e. significance
of P<0.05, R*>0.8 and lack of fit>0.1
(Montgomery, 2005). In this case, the second
order polynomial for fucoidan yield and
multiple response of alginate fitted entire
criteria, suggesting that it is acceptable for
predicting optimum response.

3.6. Optimization and verification

The optimum condition for extraction was
achieved at temperature 33.75 °C, time 58.22
min, pH 3.07. In such condition, the response
was predicted to reach fucoidan yield 0.71%,
alginate yield 29.63%, intrinsic viscosity 448.8
ml/g, and molecular weight 212.6 kDa, with

desirability wvalue of 0.805 (Figure 5).
Desirability ranges from 0 to 1, in which
desirability close to 1.0 indicates that prediction
of optimum condition generated by Design
Expert possesses high validity (Sugiono et al.
2019b).

The predicted optimum condition was
verified wusing 3 replicates, while the
experimental value of response was described
as follows: fucoidan yield 1.22+0.068%,
alginate yield 29.85+0.24%, intrinsic viscosity
409.72+8.23 ml/g, and molecular weight
194.08+3.77 kDa. Based on paired sample t-
test, the data obtained from prediction and
validation did not differ significantly (P>0.05),
suggesting that the experimental data showed a
desirable suitability with optimum point as
predicted by the model.

Table 3. Polynomial models, significance codes and fitting models

Coefficient Fucoidan | Alginate Intrinsic Molecular

yield yield viscosity weight
(%) (%) (ml/g) (kDa)

Intercept

Bo +0.74 +29.85 +446.38 +211.46

Linear

Bi -0.051m +0.87* -25.96™ -12.33

B2 +0.31™ +0.57** -16.03™ -7.61™

i) -0.49* -1.57* +17.64™ +8.34"

Quadratic

P - +0.86 " -8.54" +3.53"

P22 - -0.17™ +42.02™ +19.98™

P33 - -0.21™ +54.85™ +26.04™

Cross product

P2 - -1.57m -99.53** -47.73*

B3 - -0.91* -125.27* -59.93*

P23 - -0.44%** -122.96%** -58.82%

Fitting model

Pvalue 0.0157* | 0.0062** 0.0417* 0.0423*

Lack of Fit 0.0577™ | 0.1722" 0.7914" 0.7961™

R’ 0.9558 0.9575 0.9038 0.9032

Equation of the type Y= - fxi+ fxot pxst pxixot fxixst fxoxst fxpx it fxoxat fxsxs
Significance codes: *** =P <0.001

** =0.001<P<0.01
* =0.01<P<0.05

" =P=0.05
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Figure 5. Response surface (A) and contour plot
(B) of desirability for optimal points in
biorefinery of fucoidan and alginate sequential
extraction.

4. Conclusions

Biorefinery process for the sequential
extraction of brown algae polysaccharides has
been developed, this process can produce two
products of fucoidan and alginate. The
experimental results showed that all studied
variables (temperature, time, pH) demonstrated
linier effects on fucoidan yield, but displayed
quadratic effects on alginate yield, intrinsic
viscosity, and molecular weight. From the
optimization, the best condition for acid
treatment would be as follows: temperature
33.75 °C, time 5822 min, pH 3.07. Such
condition reached fucoidan yield 1.22+0.068%,
alginate yield 29.85+0.24%, intrinsic viscosity
409.72+8.23 ml/g, and molecular weight
194.08+3.77 kDa.
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