

Submission date: 29-Aug-2019 02:45PM (UTC+0700)

Submission ID: 1164742400

File name: PID6100315-Paper_ICIC2019-IEEE_compress_1.pdf (1.27M)

Word count: 4868

Character count: 25205

A Model for Evaluation Smart City Readiness using Structural Equation Modelling: a Citizen's Perspective

Eko Setijadi Department of Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya, Indonesia ekoset@ee.its.ac.id

Iwan Santosa Department of Information Technology Universitas Trunojoyo Madura Bangkalan, Indonesia iansantosa@gmail.com

Aang Kisnu Darmawan Dep 2 tment of Information System Madura Islamic University Pamekasan, Indonesia ak.darmawan@gmail.com

Hoiriyah Department of Information System Madura Islamic University Pamekasan, Indonesia10 hoiriyah.file.uim@gmail.com

Ronny Mardiyanto Department of Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya, Indonesia ronny@elect-eng.its.ac.id

Titus Kristanto Department of Software Engineering Institut Teknologi Telkom Surabaya Surabaya, Indonesia tintus.chris@gmail.com

Abstract- Smart City is the use of ICT-based governance and cloud is now a trend throughout the world. Various increasingly complex city problems are expected to become increasingly more efficient by applying the concept of smart cities in city governance. However, in its implementation, many crucial problems significantly affect the success of the implementation of smart cities, including the lack of competent human resources, ICT policies and governance that have not been efficient, lack of government commitment and the lack of community participation. This study aims to model smart city 118 diness factors in community perspectives. The method in this study is quantitative descriptive research using 9 a combination of the Technology Readiness Index model, the Technology Acceptance Model and the Delone McLean Model. Data collection is done by conduct 2 g surveys and interviews with 200 citizens. Data analysis using Structural Equation Modeling with the help 20 AMOS 23.0 software. The results showed that there were a significant relationship and relevance between the variables in the model used in the TRI, TAM and Delone McLean mo 15. This study contributes to the relationship modelling of the factors that determine the success of applying the smart city concept. This research provides recommendations to the government and stakeholders to pay more attention to the crucial factors in the success of developing smart cities.

Keywords-Smart City Readiness, Technology Readiness Index, Technology Acceptance Model, Delone & McLean Model, Structural Equation Model

I. INTRODUCTION

The concept of smart cities is currently becoming a trend and is expected to be a solution to a variety of increasingly complex and accumulative urban problems, such as congestion, energy needs, garbage accumulation problems, poor quality of publ 50 ervices.[1]. Major cities in Indonesia have tried to apply the concept of smart cities to solve the above problems, including the cities of Bandung, Bogor and Surabaya. In 2016, the Digital Community Center (CfDS) of the Faculty of Social and Political Sciences, Gadjah Mada University titled Surabaya City as the top-ranking city in Indonesia from 12 smart cities throughout Indonesia [2][3].

Four districts on Madura Island, namely Bangkalan, Sampang, Pamekasan and Sumenep Regencies have also initiated initiation in the implementation of smart cities by collaborating with the Faculty of Computer Science, Universitas Brawijaya Malang to create and compile a Master Plan to build smart cities, but in practice there are many problems in starting smart city development.

There are quite complicated problems in the attempt to implement smart cities in Indonesia, among them are irregularly done[4], do not have an appropriate framework[5], models are limited because each city has specific problems and needs.[6]. The other problems of implementing smart cities is the absence of understanding and outlook of SCity Construction [3], lack of unified systems and data management[7], lack of contribution [8], participation and synchronization of SCity stakeholders[9], disorganized policies [10]and ego issues, sectoral ego and governmental leadership[11].

In the process of developing smart cities, there is no process of identifying factors to examine the readiness to implement smart city technology. In previous research, several researchers have conducted studies on government readiness in the acceptar 33 of smart city technology[12], but are still unconnected. This study seeks to identify the readiness of citizens and communities in the readiness and acceptance of the application of smart cities. in this study used a combination of Technolog 32 eadiness Index (TRI) methods[13][14] as well as the Technology Acceptance Model (TAM) method and Delone McLean Model (D&M) to measure citizen's readiness and acceptance of technology adoption[15][16].

The results showed that there were a significant relationship and relevance between the variables in the model used in the TRI, TAM and Delone McLean m15els. This study contributes to the relationship modelling of the factors that determine the success of applying the smart city concept. This can be used as a way t 37 void the factor of unpreparedness of local governments in the readiness and acceptance of new technology by the application of smart

II. LITERATURE REVIEW

A. Smart City Concept

Smart C1 is a city governance concept that has used sensors and internet of things (IoT) to collect, manage and interpret data efficiently. Current data has become an essential part of resources that must be processed and managed selected from communities and devices which are then processed and analysed to monitor and manage traffic, waste management, criu 31 detection, transportation systems, electricity generation, water supply networks, school information systems, libraries, hospitals and community services others. [17][18]

1 The concept in intelligent city design brings together information and communication technology and various other physical devices and connects to IoT networks for operational technical and municipal services that are connected 48 citizens and society in general.[19]. There are several imp 57 ant factors that influence the success of the application of smart cities, such as aspects of technology, management and organisation, economics, citizens, government policies, infrastructure, and the environment. In 54elligent city governance, there are six 27 mensions, which are the main pillars of smart cities: Smart Government, Smart Economy, Smart Environment, Smart Living, Smart People, Smart Mobil 53 [20]. Professor Rudolf Giffinger et al. In 2007 sparked the concept of smart city ranking and ranking in Europe by providing six17 mensional concepts and smart city indicators, namely Smart economy, smart people, smart governance, smart mobility, environment and smart living.[21]



Fig. 1. Smart City Dimensions of Smart Cities according to Giffinger, 2007

B. Technology Readiness Index

24 Technological readiness shows the tendency of people to use new technology to achi the goals in life at home and work. This construct is seen as an overall state of mind that results from mental images and inhibitors that collectively determine a person's tendency to use new technology. [22].

The Technology Readiness Index (TRI), which was introduced by A. Parasuraman in 2000, consists of 36 attributes that measure the construct and its components. The sleek and updated version with 16 attributes, "TRI 2.0," was introduced by Parasuraman and Colby in 2015.[23].

The technology readiness model is somewhat different from the well-known acceptance model, the Technology Acceptance Model (TAM), where TRI measures the beliefs a person has about new technologies in general, while TAM measures acceptance of specific technologies. Technology readiness is a multidimensional psychographi 56 instruction, which offers ways to classify consumers based on the positive and negative technological beliefs underlying them. [23].

Technology readiness has for essential dimensions: Optimism, positive sights about technology and the belief that it offers people increased control, flexibility and efficiency. Innovativeness, the inclination to become a technology pioneer and thought leader. Inconvenience, it is considered a lack of control over technology and a feeling of being overwhelmed by it. Insecurity, technological distrust and scepticism about its ability to work well.

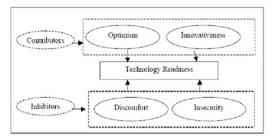


Fig. 2. Technology Readiness Index Model

C. Delone & McLean Model

The I 19 ne and McLean are models that are used to measure the succe 13 of an information system, as an alternative model of IS success. This model seeks to provide a comprehensive understanding of IS success by identifying describing, and explaining the relationships between the construct variables, which are the most dimensions for success of evaluating an informatio 26 ystem. The earliest development of this theory was first carried out by William 5 DeLone and Ephraim R. McLean in 1992[13], then refined by the original author ten years later in response to feedback received from other scholars working in the area[24][14]. This IS success model has been widely cited in thousands of scientific papers and is considered one of the most influential theories in contemporary information systems research.

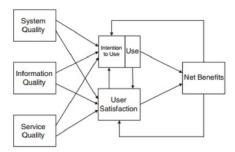


Fig. 3. Delone & Mc Lean Model

D. Technology Acceptance Model

Technology Acceptance Model or TAM is a revision of the Theory of Reasoned Action (TRA) into the Information System field. TAM believes th 30 he usefulness and ease of use that is felt to determine the individual's intention to use a system by 47 ering values serving as mediation from the actual use of the system. The perceiv 23 usefulness can be seen as a result of the direct impact of perceived ease of use. The researchers then simplified TAM by removing the attitude variables that exist in TRA[16][15][25]. Efforts to develop TAM, in general, are then carried out by usin 9 three approaches, namely by introducing constructs of the related models, by introducing additional or alternative constructs of beliefs, and by examining the antecedents and moderators of perceived usefulness and convenience[26]. In the latest study of Gefen and Larsen[27] 55 pwed that contractual relationships in TAM emerged from semantic relationships between questionnaire items. A theory that explains their findings is explained by the Semantic theory of the response of the survey conducted.

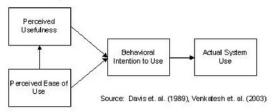


Fig. 4. Technology Acceptance Model

III. METHODOLOGY

The research method is included in the type of quantitative descriptive research. Researchers make observations and direct observations on the object of resear 46. The process of observing and retrieving data is done using primary and secondary data. Primary data was obtained by interviewing and giving questionnaires to the people in Sampang district and Pamekasan to measure the readiness to implement smart cities. The questionnaire was prepared based on research with 5 Likert scales. Construct 35 in the research model is a combination of models in the Technology Readiness Index (TRI), Technology Acceptance Model (TAM), and Delone McLean (D&M). Whereas data-processing uses Structural Equation Modeling and Path Analysis with aids of AMOS 23.0 software.

A. Proposed Research Conceptual Framework

The proposed conceptual framework of this research was carried out by combining and rebuilding 14 construct variables from the Technology Readiness Index, TAM models da Delone & Mc Lean. The 14 contracted variables are Optimism (O), Innovativeness (I), Insecurity (IN), Discomfort (D), System Quality (SysQ), Servis Quality (ServQ), Information Quality (IQ), Perceived of Use (PU), Perceived Ease of Usefulness (PEOU), Intention to Use (IU), User Satisfaction (US), Actual Use (AU), Net Benefit (NB), and Smart City Readiness (SCR).

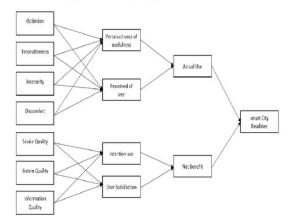


Fig. 5. Proposed Research Conceptual Framework

TABLE I. MAIN CONSTRUCT PROPOSED MODEL

No	Variables	Definitions	Indicators	Symbols
18		A positive view of technology and believe		01
1	Optimism (O)	that technology can 52 ide an increase in	Improve the performance	O2
		control, flexibility, and efficiency in life	efficient	O3
		TI	According to the need	II
	Innovativen	The technology to be	responsive	12
2	ess (I)	pioneering or at the forefront of technology use	Can be developed	I3
		use	Attractive appearance	I4
		Worries that the user is	Security	INI
3	Insecurity (IN)	working on technology and making transaction or	Data availability	IN2
	0.50.50	sanding information	Accurate data	IN3
			Difficult to learn	D1
	D: 6	Tec 45 ogy users burden	Difficult to understand	O2 O3 II I2 I3 I4 INI IN2 IN3 D1 D2 D3 D4 D5 SysQ1 SysQ2 ServQ1 ServQ2 ServQ3 ServQ4
4	Discomfort (D)	the perception of lack of control of technology and	Not ease to master	D3
		the presence of pressure	Lack of experience	D4
		77	New system	D5
		44	Ease to learn	SysQ1
5	System Quality	Measurement of the quality of the information system itself, whether	Safe and stable system	SysQ2
	(SysQ)	software or hardware	System response time	SysQ3
	Service	Comparison of user	Technical ability	ServQ1
6	Quality	expectation with the	empathy	ServQ2
	(ServQ)	perception of the real services they receive	present	
	43	services they receive	responsive	ServQ4
7	Information	The quality of information	completeness	IQ1
	Quality (IQ)	that is measured	accurate	IQ2

		subjectively by the user	reliability	IQ3
		which is then called perceptual information quality		IQ 42
		quarty	Faster use	PUI
	Perceived of	A measure where the use of the system is believed	The performance	PU2
8	Use (PU)	to brings benefits to the people who use it	Increase effectiveness	PU3
			effectiveness	PU4
	Perceived	A measure where one	Ease to learn	PEOU1
	Ease of	believes that a system	Controlled	PEOU2
9	Usefulness (PEOU)	brings convenience to	Clear and understood	PEOU3
	(I LOO)	users	Flexible	PEOU4
		411erences in use into the	Daily use	IU1
10	Intention to Use (IU)	use of the system which means the use of	User frequency	IU2
	Use (IU)	information and use of the	Light of use	IU3
		information system itself	Various Uses	IU4
	II	Is a response and	Information satisfaction	US1
11	User Satisfaction	feedback that emerges from the user after using	Overall frequency	US2
	(US)	the information system	Various information	US4
			continue	AUI
12	Actual Use	Measurement of frequency and duration of	Use more	AU2
12	(AU)	use of technology	Use in general terms	AU3
	Net Benefit	The result or benefit felt by individuals and	Speed of completing work	NB1
13	(NB)	organisation after	performance	NB2
	(IVD)	implementing an	effectivity	NB3
		information system	Increasing efficiency	NB4
			Human Resources	SCR1
			Technology	SCR2
	S		Government	SCR3
14	Smart City	The level of readiness of a	Citizen	SCR4
14 Readiness (SCR)	city becomes a smart city	Private & Business Sector	SCR5	
			Educational sector	SCR6

In this study, I will test the 20 research hypotheses as follows:

TABLE II. CONCEPTUAL RESEARCH HYPOTHESIS

Hypothesis	Relations	Hypothesis7
H1	I→PU	Innovativeness variable has a positive and significant effect 7 in Perceived of Use
H2	O→PU	Optimism variable has a positive and significant effect on Perceived of Use
НЗ	IN→PU	2 security variable has a positive and significant effect on Perceived of Use
H4	D→PU	Discomfort variable has a positive and significant effec 2 n Perceived of Use
H5	I→PEOU	Innovativeness variable has a positive and significant effect on Perceived Ease of Usefulness 22
Н6	O→PEOU	Optimism variable has a positive and significant effect on Perceived Ease of Usefulness
H7	IN→PEOU	Insecurity variable has a positive and significant effect on Perceived Ease of Usefulness
H8	D→PEOU	Discomfort variable has a positive and significant effect on Perceived Fase of Usefulness 3
Н9	IQ→IU	Information Quality variable has a positive and significant effect on Intent to Use
H10	SysQ→IU	System Quality variable has a positive and significant effect on 13 nt to Use
H11	ServQ→IU	Service Quality variable has a positive and significant effect on Intent to Use

H12	IQ→US	Information Quality variable has a positive and significant effect on User
H13	SysQ→US	System Quality variable has a positive and significant effect on User 3 tisfaction
H14	ServQ→US	Service Quality variable has a positive and significant effect on User Satisfactic 21
H15	PU→AU	Perceived of Use variable has a positive and significant effect on Actual Use
H16	PEOU→AU	Perceived Ease of Usefulness variable has a positive and significant effect on Actua 4 se
H17	IU→NB	Intent to Use variable has a positive and
H18	US→NB	User Satisfaction variable has a positive and significant effect 3 Net Benefit
H19	AU→SCR	Actual Use Variabel has a positive and significant effect on Smart City Readiness 40
H20	NB→SCR	Net Benefit variable has a positive and significant effect on Smart City Readiness

B. Demographic Respondent

In this study, data were collected on 200 respondents who were then classified based on age, occupation and understanding of internet facilities. Data collection results are described as follows:

TABLE III. RESPONDENT'S AGE

Age (Year)	Frequency	Percentage(%)
17-25	65	32.5
26-35	80	40
36-45	55	27.5
Total	200	

TABLE IV. RESPONDENT'S OCCUPATION

Occupation	Frequency	Percentage(%)
Government employees	20	10
entrepreneur	40	20
Student	40	20
Housewife	15	7.5
Employee	25	12.5
Labor	25	12.5
Farmers	20	10
Fisherman	20	10
Total	200	

TABLE V. UNDERSTANDING OF THE INTERNET

Understanding of the internet	Frequency	Percentage(%)
Lack of understanding	75	37.5
Understand enough	65	32.5
Very understanding	60	30
Total	200	

IV. RESULT AND DISCUSSION

After the questionnaire from the community and the local government was collected, the validity test, reliability test, were conducted. Validity testing is done to see whether each question is built based on a valid construct. While reliability testing is used to see whether the questionnaire made can be counted or not. A good and reliable questionnaire instrument

will have close results for measuring the same object. Whereas convergent validity is used to measure correlation scores from correlations between indicator score scores.

Validity Test is used to measure the accuracy of the instruction in this study, then testing the validity. Namely, test convergent validity and discriminant validity test. if the outer loading value of each indicator is 0.5, then it can be said to be valid

TABLE VI. VALIDITY TEST RESULT

Latent variables	Reflective Indicator	Outer	Information
variables	marcator	Loading	mormation
Optimism	O1	0.774	Valid
(O)	O2	0.600	2 lid
(0)	O3	0.521	Valid
	I1	0.600	Valid
Innovativeness	I2	0.572	Valid
(I)	I3	0.531	Valid
	I4	0.596	Valid
Insecurity	IN1	0.549	Valid
(IN)	IN2	0.600	Valid
(11.1)	IN3	0.610	Valid
	D1	0.787	Valid
Discomfort	D2	0.596	Valid
(D)	D3	0.736	Valid
(15)	D4	0.638	Valid
	D5	0.699	Valid
	IQ1	0.531	Valid
Information	IQ2	0.369	Invalid
Quality (IQ)	IQ3	0.498	Invalid
	IQ4	0.634	Valid
6 .	SysQ1	0.335	Valid
System Quality	SysQ2	0.776	Valid
	SysQ3	0.674	Valid
(SysQ)	SysQ4	0.626	Valid
	ServQ1	0.514	Valid
Servis Quality	ServQ2	0.690	Valid
(ServQ)	ServQ3	0.573	2 lid
	ServQ4	0.631	Valid
	PU1	0.682	Valid
Perceived of	PU2	0.573	Valid
Use (PU)	PU3	0.469	Invalid
. ,	PU4	0.565	Valid
Perceived	PEOU1	0.434	Invalid
Ease of	PEOU2	0.599	Valid
Usefulness	PEOU3	0.702	Valid
(PEOU)	PEOU4	0.522	Valid
(1200)	IU1	0.441	Invalid
	IU2	0.684	Valid
Intention to	IU3	0.696	Valid
Use (IU)	IU4	0.608	Valid
	US1	0.745	Valid
User	US2	0.752	Valid
Satisfaction (US)	US3	0.535	Valid
` -/	AU1	0.417	Valid
Actual Use	AU2	0.639	Valid
(AU)	AU3	0.645	Valid
` -/	NB1	0.476	Invalid
02020 62	NB2	0.525	Valid
Net Benefit	NB3	0.459	Valid
(NB)	NB4	0.482	Valid
	SCR1	0.482	Valid
	SCR2	0.360	Valid
Smart City	SCR2	0.330	Valid
Readiness	SCR3	0.522	Valid
(SCR)	SCR4 SCR5	0.365	Valid
	SCR5 SCR6	0.365	Valid
	2CK0	0.478	vand

Based on the table above, the results of the convergent validity test conducted in this study indicate that most indicators of latent variables have outer loading values above 0.5. however, there are still indicators that still have an output value below 0.5, IQ2, IQ3, PU3, PEOU1, IU1, and NB1

TABLE VII. DISCRIMINANT TEST RESULT

	SysQ	IQ	D	IN	I	0	ServQ
SysQ	0.396						
IQ	0.13	0.398					
D	0.454	0.337	0.454				
IN	0.305	0.312	0.310	0.326			
I	0.346	0.351	0.349	0.316	0.364		
О	0.243	0.365	0.261	0.246	0.310	0.307	
ServQ	0.285	0.375	0.313	0.252	0.312	0.366	0.372
IU	0.264	0.277	0.267	0.290	0.281	0.215	0.231
US	0.329	0.360	0.352	0.313	0.341	0.309	0.328
PEOU	0.272	0.293	0.285	0.269	0.284	0.246	0.261
PU	0.406	0.422	0.413	0.325	0.429	0.378	0.392
NB	0.296	0.320	0.312	0.295	0.309	0.268	0.285
AU	0.240	0.247	0.243	0.191	0.245	0.230	0.238
SCR	0.318	0.344	0.334	0.315	0.332	0.288	0.306

TABLE VIII. DISCRIMINANT TEST RESULT (CONTINUED)

	IU	US	PEOU	PU	NB	AU	SCR
SysQ							
IQ							
D							
IN							
I							
0							
ServQ							
IU	0.246						
US	0.273	0.247					
PEOU	0.233	0.329	0.251				
PU	0.312	0.401	0.313	0.485			
NB	0.255	0.316	0.277	0.358	0.307		
AU	0.169	0.231	0.175	0.289	0.203	0.212	
SCR	0.272	0.385	0.295	0.384	0.328	8 220	0.334

Test the validity of discrimination, based on the table above; it can be seen that the value of cross-loading is variable> 0.5. So that it can be concluded that some latent variables fulfil discriminant validity. however, there are still several variables that have values below 0.5 including variables IQ, US, IU, and AU

TABLE IX. RELIABILITY TEST RESULT

Latent variable	Symbols	Composite Reliabilities	Information
Optimism	0	0.307	Unreliable
Innovativeness	I	0.364	Unreliable
Insecurity	IN	0.326	Unreliable
Discomfort	D	0.454	Unreliable
Intention to use	ITU	0.996	Reliable
User satisfaction	US	0.798	Reliable
Perceived ease of usefulness	PEOU	1.200	Reliable
Perceived of use	PU	1.063	Reliable
Net benefit	NB	1.021	Reliable
Actual use	AU	0.825	Reliable
Smart city readiness	SCR	1.048	Reliable

After testing the validity, then performed reliability testing. This test is done by calculating the composite reliability value. If the value of the reliability test is> 0.5, then the latent variable can be considered good or reliable. Based on table data, it shows that the variable has a value of> 0.5, which means that it is considered reliable.

Confirmatory Factor Analysis Test the structural model in AMOS was evaluated using path analysis, here is the CFA and the model in this research study

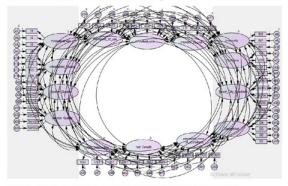


Fig. 6. Confirmatory Factor Analysis Model using AMOS 23.0

Based on research results can be seen in the following results

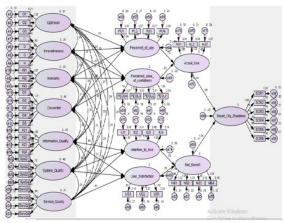


Fig. 7. SEM Model Result using AMOS 23.0

TABLE X. HYPOTHESIS TEST RESULT

Hypothesis	Relations	Critical Ratio	Noted	Result
H1	I→PU	7.228	>1.96	Accepted
H2	O→PU	2.276	>1.961	Accepted
H3	IN→PU	2.286	>1.96	Accepted
H4	D→PU	0.683	<1.96	Rejected
H5	I→PEOU	2.510	>1.96	Accepted
H6	O→PEOU	1.648	>1.96	Accepted
H7	IN→PEOU	7.779	>1.96	Accepted
H8	D→PEOU	0.605	<1.96	Rejected
H9	IQ→IU	5.568	>1.96	Accepted
H10	SysQ→IU	1.283	>1.96	Accepted
H11	ServQ→IU	4.482	>1.96	Accepted
H12	IQ→US	5.039	>1.96	Accepted
H13	SysQ→US	3.465	>1.96	Accepted
H14	ServQ→US	1.985	>1.96	Accepted
H15	PU→AU	8.560	>1.96	Accepted
H16	PEOU→AU	3.358	>1.96	Accepted
H17	IU→NB	4.667	>1.96	Accepted
H18	US→NB	8.715	>1.96	Accepted
H19	AU→SCR	1.985	<1.96	Accepted
H20	NB→SCR	9.675	>1.96	Accepted

Based on Table X above, the final results are presented as Innovatives (I), Optimism (O), Insecurity (IN) variables that have a positive and significant effect on the Perceived of Use (PU) variable while the Discomfort (D) variable does not have a positive effect on Perceived of Use (PU).

Innovativene (I), Optimism (O), Insecurity (IN) variables have a positive and significant effect on the Perceived Ease of Usefulness (EOU) variable while variable Discomfort (D) does not have a positive effect on Perceived Ease of Usefulness (PEOU).

Variable Information Quality (IQ), System Quality (SysQ), Service Quality (ServQ), have a p 39 ive and significant effect on Intention to use (IU). Information Quality 2Q), System Quality (SysQ), Service Quality (ServQ) variables, have a positive and significant effect on User Satisfaction (US).

The Perceived of Use (PU) variable, Perceived Ease of Usefulness (PEOU) has a positive and significant effect on actual Use (AU).

The Intent 16 to Use (IU), User Satisfaction (US) variables has a positive and significant effect on Net Benefit (NB). Moreover, finally 3 he Actual Use Variable (AU) and Net Benefit (NB) have a positive and significant effect on Net Benefit (NB).

In the end, based on the results of this study the following modeling results are obtained:

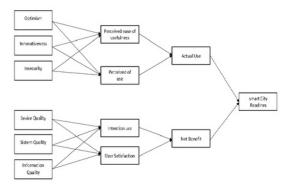


Fig. 8. Final Model

In this final model, the results show that all relations between variables in the proposed model 34 proven except that the Discomfort variable is not proven to have a positive and significant effect on the PEOU and PU variables

V. CONCLUSION

Smart City Readiness on districts as a concept must be started consistently and continuously following the previously prepared master plan. It is necessary to prepare the community and local government in accepting and adopting new technologies. This study identifies factors that influence regional readiness for the application of smart cities.

Based on the analysis carried out 18 out of 20 hypotheses were accepted while the rest were rejected. Therefore, it can be concluded that the factors that influence the public and civil servants in Sampang and Pamekasan districts are

influenced by Optimism (IN), Discomfort (D), Information Quality (IQ), System (III) ity (SysQ), Servis Quality (ServQ), Perceived of Use (PU), Perceived Ease of Usefulness (PEOU), Intention to Use (IU), User Satisfaction (US), Actual Use (AU), Net Benefit (NB).

ACKNOWLEDGEMENT

Thank you to LP2M Institut Teknologi Sepuluh Nopember Surabaya. This research was carried out thanks to a local funding research grant in 2019 with a research-based community service scheme

REFERENCES

- S. H. Supangkat, "Smart City Development in Indonesia and Asian-African Nations," *IEICE*, no. 78, 2015.
- [2] R. Fauzan, "Matra pembaruan," J. Matra Pembaruan, vol. 1, no. Inovasi kebijakan, pp. 75–84, 2017.
- [3] K. A. Achmad, L. E. Nugroho, A. Djunaedi, and Widyawan, "Smart City for Development: Towards a Conceptual Framework," Proc. - 2018 4th Int. Conf. Sci. Technol. ICST 2018, vol. 1, pp. 1–6, 2018.
- [4] S. Meiningsih et al., "ICT White Paper Indonesia," in Jakarta: Research and Development of Human Resources of the Ministry of Communication and Information, 2013.
- [5] Kemenkominfo, ICT White Paper Indonesia 2016. 2016.
- [6] L. G. Anthopoulos, M. Janssen, and V. Weerakkody, "Comparing Smart Cities with different modelling approaches," vol. 1997, pp. 525–528, 2016.
- [7] G. Gunartin, "Analisa Faktor-Faktor Kendala Ketercapaian Smart Mobility Dalam Upaya Menuju Konsep Smart City (Studi Pada Kota Tangerang Selatan)," *Inovasi*, vol. 5, no. 2, p. 33, 2018.
- Kota Tangerang Selatan)," *Inovasi*, vol. 5, no. 2, p. 33, 2018.
 H. A. Wibowo, "Model of Academic Role in Supporting Smart City Implementation in Serang City," *J. Kebijak. Pembang. Drh.*, vol. 2, no. 1, pp. 29–42, 2018.
- [9] M. E. B. Conoras and N. K. Hikmawati, "Smart City Peluang Dan Tantangan Untuk Papua Bangkit, Mandiri dan Sejahtera," Konf. Nas. Sist. Inf., pp. 8–9, 2018.
- [10] A. Suhendra and A. H. Ginting, "Kebijakan Pemerintah Daerah dalam Membangun Smart City di Kota Medan," Matra Pembaruan, vol. 2, no. 3, pp. 185–195, 2018.
- [11] C. E. W. U. dan M. Hariadi2), "Strategi Pembangunan Smart City dan Tantangannya bagi Masyarakat Kota," J. Strateg. dan Bisnis, vol. 4, no. 2, pp. 159–176, 2016.
- [12] H. Gunawan, "Identifying Factors Affecting Smart City Adoption Using The Unified Theory of Acceptance and Use of Technology (UTAUT) Method," 2018 Int. Conf. Orange Technol., pp. 1–4, 2019.
- [13] D. E. R. M. William H., "Information Systems Success: The Quest for the Dependent Variable," *Inf. Syst. Res.*, vol. 3, no. 1, pp. 60–95, 1992.
- [14] E. R. DeLone, William H.; McLean and E. DeLone, William, H; McLean, "The DeLone and McLean Model of Information Systems Success: A Ten-Year Update," J. Manag. Inf. Syst., vol. 19, no. 4, pp. 9–30, 2003.
- [15] F. D. Davis, "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology," MIS Q., vol. 13, no. 3, p. 319, 1989.
- [16] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, "User Acceptance of Information Technology: Toward a Unified View," MIS Q., vol. 27, no. 3, pp. 425–478, 2003.
- [17] J. I. Sánchez Vergara, "Sharing cities. A Case for Truly Smart and Sustainable Cities," *Int. Multidiscip. J. Soc. Sci.*, vol. 7, no. 2, p. 218, 2018.
- [18] Professor Sam Musa, "Smart Cities A Roadmap for Development," 2016.
- [19] T. J. Hemández Gracia and A. Corichi García, Sustainable Smart Cities. Creating Spaces for Technological, Social and Business Development, vol. 6, no. 12, 2018.
- [20] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano, "Current trends in smart city initiatives: Some stylised facts," Cities, vol. 38, pp. 25–36, 2014.

- [21] R. Giffinger, C. Fertner, H. Kramar, and E. Meijers, "Cityranking of European Medium-Sized Cities," pp. 1–12, 2007.
- [22] P. A., "Technology Readiness Index (TRI): A Multipleitem Scale To Measure Readiness To Embrace New Technologies," J. Serv. Res., vol. 2:307, no. May, 2000.
- [23] A. Parasuraman and C. L. Colby, "An Updated and Streamlined Technology Readiness Index: TRI 2.0," J. Serv. Res., vol. 18, no. 1, pp. 59–74, 2015.
- [24] G.-J. De Vreede, J. F. N. Jr, and R. H. S. Jr, "Information Systems Success Revisited," Proc. 35th Hawaii Int. Conf. Syst. Sci. vol. 19, no. 4, pp. 5–8, 2002
- Sci., vol. 19, no. 4, pp. 5–8, 2002.
 V. Venkatesh and F. D. Davis, "Studies Linked references are available on JSTOR for this article: A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000.
- [26] B. H. Wixom and P. a Todd, "Integration of User Satisfaction Technology Acceptance," *Inf. Syst. Res.*, vol. 16, no. 1, pp. 85– 102, 2005.
- [27] D. Gefen and K. Larsen, "Controlling for Lexical Closeness in Survey Research: A Demonstration on the Technology Acceptance Model," J. Assoc. Inf. Syst., vol. 18, no. 10, pp. 727– 757, 2018.

ORIGINALITY REPORT		
24	- %	

SIMILARITY INDEX

16%

INTERNET SOURCES

17%

PUBLICATIONS

22%

STUDENT PAPERS

PRIMARY SOURCES

en.wikipedia.org

Internet Source

2%

Submitted to Universitas Bina Darma
Student Paper

2%

Nripendra P. Rana, Yogesh K. Dwivedi, Michael D. Williams. "Chapter 15 Examining the Factors Affecting Intention to Use of, and User Satisfaction with Online Public Grievance Redressal System (OPGRS) in India", Springer Science and Business Media LLC, 2013

Publication

1%

4 Jo

Journal of Research in Interactive Marketing, Volume 5, Issue 2-3 (2011-10-29)

1%

- Publication
- Submitted to University of Central England in Birmingham

1%

Student Paper

6

www.allbusiness.com

Internet Source

1%

7	Lu, J.L "Investigating passengers' intentions to use technology-based self check-in services", Transportation Research Part E, 200903	1%
8	Submitted to Sriwijaya University Student Paper	1%
9	documents.mx Internet Source	1%
10	Tri Susanto, Ronny Mardiyanto, Djoko Purwanto. "Development of Underwater Object Detection Method Base on Color Feature", 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), 2018 Publication	1%
11	Submitted to University of Paisley Student Paper	1%
12	Submitted to University of South Africa Student Paper	1%
13	Submitted to Tshwane University of Technology Student Paper	<1%
14	Herti Miawarni, Dwi Edi Setyawan, Eko Setijadi, M. Mahaputra Hidayat, Surya Sumpeno. "Tracking Antenna System Design for DVB-T2 Set Top Box Based on Fuzzy Inference	<1%

System", 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), 2018

Publication

15	scholarworks.sjsu.edu Internet Source	<1%
16	jurnal.stikom.edu Internet Source	<1%
17	Submitted to Luiss Guido Carli University Student Paper	<1%
18	Submitted to Nyenrode Business Universiteit Student Paper	<1%
19	Submitted to University of Southampton Student Paper	<1%
20	Submitted to University of KwaZulu-Natal Student Paper	<1%
21	Submitted to Maastricht School of Management Student Paper	<1%
22	Hyojung Cho, Mi Young Lee. "The Effect of Message Construal Level, Temporal Distance and Consumer's SNS Self-efficacy on Consumers' Attitude Toward SNS Fashion Advertisements", International Journal of Human Ecology, 2015 Publication	<1%

23	link.springer.com Internet Source	<1%
24	Submitted to Universiti Tenaga Nasional Student Paper	<1%
25	wrap.warwick.ac.uk Internet Source	<1%
26	Submitted to Kuala Lumpur Infrastructure University College Student Paper	<1%
27	www.urb.im Internet Source	<1%
28	Submitted to S.P. Jain Institute of Management and Research, Mumbai Student Paper	<1%
29	Herry Irawan, Irwan Syah. "Evaluation of implementation of enterprise resource planning information system with DeLone and McLean model approach", 2017 5th International Conference on Information and Communication Technology (ICoIC7), 2017 Publication	<1%
30	Submitted to Universiti Putra Malaysia Student Paper	<1%
31	Submitted to BITS, Pilani-Dubai Student Paper	<1%

32	Submitted to Bahcesehir University Student Paper	<1%
33	Submitted to Heriot-Watt University Student Paper	<1%
34	Miguel D Ramirez. "Are Foreign and Public Capital Productive in the Mexican Case? A Panel Unit Root and Panel Cointegration Analysis", Eastern Economic Journal, 2009	<1%
35	espace.library.uq.edu.au Internet Source	<1%
36	docplayer.fr Internet Source	<1%
37	Submitted to Napier University Student Paper	<1%
38	Fethi Calisir, Cigdem Altin Gumussoy, Ayse E. Bayraktaroglu, Demet Karaali. "Predicting the Intention to Use a Web-Based Learning System: Perceived Content Quality, Anxiety, Perceived System Quality, Image, and the Technology Acceptance Model", Human Factors and Ergonomics in Manufacturing & Service Industries, 2014 Publication	<1%
39	Submitted to Higher Education Commission	<1%

40	Christopher Hawkins. "Competing interests and the political market for smart growth policy", Urban Studies, 2013 Publication	<1%
41	www.tandfonline.com Internet Source	<1%
42	Submitted to Institute of Research & Postgraduate Studies, Universiti Kuala Lumpur Student Paper	<1%
43	ecis2014.eu Internet Source	<1%
44	Submitted to Coventry University Student Paper	<1%
45	mafiadoc.com Internet Source	<1%
46	Submitted to Universitas Negeri Jakarta Student Paper	<1%
47	Submitted to Universitas Merdeka Malang Student Paper	<1%
48	academic-conferences.org Internet Source	<1%
49	Submitted to Pasundan University Student Paper	<1%

	50	Pribyl, Ondrej. "Transportation, intelligent or smart? On the usage of entropy as an objective function", 2015 Smart Cities Symposium Prague (SCSP), 2015. Publication	<1%
	51	Submitted to Universiti Teknologi Malaysia Student Paper	<1%
	52	Submitted to University of Surrey Roehampton Student Paper	<1%
	53	Albino, Vito, Umberto Berardi, and Rosa Maria Dangelico. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives", Journal of Urban Technology, 2015. Publication	<1%
	54	Submitted to Leeds Beckett University Student Paper	<1%
-	55	Submitted to Anglia Ruskin University Student Paper	<1%
-	56	Submitted to The University of Manchester Student Paper	<1%
-	57	"Sustainable Smart Cities", Springer Science and Business Media LLC, 2017 Publication	<1%

Exclude quotes On Exclude matches Off

Exclude bibliography On