On commutative characterization of graph operation with respect to complement metric dimension

Ulfi Faiqoh Wardani ${ }^{1}$, Rica Amalia ${ }^{2}$
${ }^{1}$ (Mathematics Department, Universitas Islam Madura Pamekasan, Indonesia)

Abstract

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between vertices u and v in G is denoted by $d(u, v)$, which serves as the shortest path length from u to v. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq$ $V(G)$ be an ordered set, and v is a vertex in G. The representation of v with respect to W is an ordered set k tuple, $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(w_{k}\right)\right)$. The set W is called a complement resolving set for G if there are two vertices $u, v \in V(G) \backslash W$, such that $r(u \mid W)=r(v \mid W)$. A complement basis of G is the complement resolving set containing maximum cardinality. The number of vertices in a complement basis of G is called complement metric dimension of G, which is denoted by $\overline{d r m}(G)$. In general, comb and corona product are non-commutative operations on a graph. However these operations can be commutative in respect to complement metric dimensions. In this study, we get the commutative characterization of corona and comb product, which are $\overline{d \iota m}(G \odot H)=\overline{d l m}(H \odot G) \Leftrightarrow 2 n+\overline{d l m}\left(K_{1}+H\right)=2 m+\overline{d l m}\left(K_{1}+G\right)$ for $n, m \geq 2$ and $\overline{d l m}(G \triangleleft H)$. $=$ $\overline{d \iota m}(H \triangleleft G) \Leftrightarrow \overline{d \iota m}(H)-m=\overline{d \iota m}(G)-n$ for $n, m \geq 3$, where n and m are the order of G and H, respectively.

Keywords: Comb product operation, complement metric dimension, commutative characterization, corona operation

I.INTRODUCTION (11 BOLD)

Graph theory are one of the subjects in Discrete Mathematics that have long been known and are widely applied in various fields. Graph theory that has developed rapidly to date started with the problem "Seven Konigsberg Bridges" which Euler successfully solved through his article "Solutio problematicas geometriam situs pertinentis" in 1736 [1].

Until now, graph theory have been used in the study of electronic networks, computer database, discovery of medicine, genetics, architecture, and even the study of computer vision, artificial intelegent and deep learning [5]. One of the topics in graph theory is metric dimension. The metric dimension was first introduced by Harary and Melter at 1976. The study of metric dimension becomes a complate problem, meaning that it is not easy to get the metric dimension of a graph of a certain shape. Therefore, to get the metric dimension of certain shape graphs or certain classes, an analysis of the subclasses is carried out first to make it easier to find the metric dimensions of graphs in general [3]. The metric dimension is the minimum cardinality of resolving sets on graph \boldsymbol{G} which is denoted by $\operatorname{dim}(\boldsymbol{G})$. Let \boldsymbol{u} and \boldsymbol{v} be two vertices on a connected graph \boldsymbol{G}. The distance from \boldsymbol{u} to \boldsymbol{v} is the length of the shortest path between \boldsymbol{u} and \boldsymbol{v} in \boldsymbol{G} denoted by $\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$ [3].

Other concept of metric dimension is complement metric dimension. Let \boldsymbol{G} be a connected graph that has more than two vertices with the vertex set $\boldsymbol{V}(\boldsymbol{G})$ and the edge set $\boldsymbol{E}(\boldsymbol{G})$. Set $\boldsymbol{S} \subseteq \boldsymbol{V}(\boldsymbol{G})$ is complement resolving set of \boldsymbol{G} if there are two vertices $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G}) \backslash \boldsymbol{S}$, such that $\boldsymbol{r}(\boldsymbol{u} \mid \boldsymbol{S})=\boldsymbol{r}(\boldsymbol{v} \mid \boldsymbol{S})$. Complement basis of \boldsymbol{G} is complement resolving set that has the maximum cardinality. These cardinality of complement basis is called complement metric dimension, denoted by $\overline{\boldsymbol{d} \boldsymbol{\iota m}}(\boldsymbol{G})$ [9].

Let $*$ be an operation on a graph, the operation $*$ is said to be commutative if $\boldsymbol{G} * \boldsymbol{H} \cong \boldsymbol{H} * \boldsymbol{G}$ for each graph \boldsymbol{G} and \boldsymbol{H}. Then, the operation * is said to be commutative with respect to complement metric dimension if $\overline{\operatorname{dim}}(\boldsymbol{G} * \boldsymbol{H})=\overline{\mathbf{d ı m}}(\boldsymbol{H} * \boldsymbol{G})$, denoted by $\boldsymbol{G} * \boldsymbol{H} \cong \overline{\operatorname{dim}}(\boldsymbol{H} * \boldsymbol{G})$. Research on commutative characterization of corona and comb product operation has been done in [8] related to metric dimension. Meanwhile, research on complement metric dimension of graphs has also been done in [9] by getting complement metric dimension on the path graph $\left(\boldsymbol{P}_{\boldsymbol{n}}\right)$, circle graph $\left(\boldsymbol{C}_{\boldsymbol{n}}\right)$, star graph $\left(\boldsymbol{S}_{\boldsymbol{n}}\right)$, and complete graph $\left(\boldsymbol{K}_{\boldsymbol{n}}\right)$. Based on the description above, the purpose of writing this article is to analyze the commutative characterization of corona and comb product operations related to complement metric dimensions.

Theorem 1.1 [8]. $\overline{\operatorname{dim}}\left(P_{n}\right)=1$, for $\boldsymbol{n}>2$
Theorem 1.2 [8]. $\overline{\operatorname{dım}}\left(C_{n}\right)=\left\{\begin{array}{cc}1 & \text { if } n \text { is odd } \\ 2 & \text { if } n \text { is even }\end{array}\right.$ where $n>2$

Volume - IX, Issue - I, January - 2024, PP - 119-125
Theorem 1.3 [8]. $\overline{\mathrm{d} \mathrm{m}}\left(S_{n}\right)=n-2$, for $n>2$
Theorem 1.4 [8]. $\overline{\mathrm{dmm}}\left(K_{n}\right)=n-2$, for $n>2$
Theorem 1.5 [8]. Let G be a connected graph of order n and H be a connected graph of order of order $m \geq 2$.
Then

$$
\overline{\operatorname{dım}}(G \odot H)=(n-1)(m+1)+\overline{\operatorname{dım}}\left(K_{1}+H\right)
$$

Theorem $1.6[8]$. Let G and H be a connected graph of order of order $n, m \geq 3$. Then

$$
\overline{\operatorname{dım}}(G \triangleleft H)=\left\{\begin{array}{cc}
\overline{\operatorname{dım}}(H)+(n-1) m & \text { if grafting vertex is a member basis complement of } H \\
m \cdot \overline{\operatorname{dım}(G)} & \text { for another }
\end{array}\right.
$$

II.COMPLEMENT METRIC DIMENSION OF CORONA PRODUCT GRAPHS

In this section we get the complement metric dimension of corona product graphs, which are $G \odot P_{m}, G \odot C_{m}$, $G \odot S_{m}$, and $G \odot K_{m}$.

Corollary 2.1 Let G be a connected graph of order n and P_{m} be a path, then

$$
\overline{\operatorname{dım}}\left(G \odot P_{m}\right)=\left\{\begin{array}{cc}
n(m+1)-2 & \text { if } m=2,3 \\
n(m+1)-3 & \text { if } m>3
\end{array}\right.
$$

Proof. Based on Theorem 1.5, $\overline{\operatorname{dim}}\left(G \odot P_{m}\right)=(n-1)(m+1)+\overline{\operatorname{dım}}\left(K_{1}+P_{m}\right)$. So, first we must get $\overline{\operatorname{dim}}\left(K_{1}+P_{m}\right)$. Let $V\left(K_{1}+P_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ and $E\left(K_{1}+P_{m}\right)=\left\{v_{0} v_{i} \mid i=1,2, \ldots, m\right\} \cup\left\{v_{i} v_{i+1} \mid i=\right.$ $1,2, \ldots, m-1\}$.
Case 1. For $m=2$
Select $W=\left\{v_{0}\right\} \subseteq V\left(K_{1}+P_{2}\right)$. Then there are $v_{1}, v_{2} \in V\left(K_{1}+P_{2}\right) \backslash W$ such that $r\left(v_{1} \mid W\right)=r\left(v_{2} \mid W\right)=$ $(1,1)$. So, W is complement resolving set of. $K_{1}+P_{2}$. Because $\left|V\left(K_{1}+P_{2}\right)\right|=3$ and $|W|=1=\mid V\left(K_{1}+\right.$ $\left.P_{2}\right) \mid-2$ is the maximum cardinality of complement resolving set, then $\overline{\operatorname{dim}}\left(K_{1}+P_{2}\right)=1$.
Case 2. For $m=3$
Select $W=\left\{v_{1}, v_{3}\right\} \subseteq V\left(K_{1}+P_{3}\right)$. Then there are $v_{0}, v_{2} \in V\left(K_{1}+P_{3}\right) \backslash W$ such that $r\left(v_{0} \mid W\right)=r\left(v_{2} \mid W\right)=$ $(1,1)$. So, W is complement resolving set of $K_{1}+P_{3}$. Because $\left|V\left(K_{1}+P_{3}\right)\right|=4$ and $|W|=2=\mid V\left(K_{1}+\right.$ $\left.P_{3}\right) \mid-2$ is the maximum cardinality of complement resolving set, then $\overline{\operatorname{drm}}\left(K_{1}+P_{3}\right)=2$.
Case 3. For $m>3$
Select $W=\left\{v_{0}, v_{4}, v_{5}, v_{6}, \ldots, v_{m}\right\} \subseteq V\left(K_{1}+P_{m}\right)$. Then there are $v_{1}, v_{2} \in V\left(K_{1}+P_{m}\right) \backslash W$ such that $r\left(v_{1} \mid W\right)=$ $r\left(v_{2} \mid W\right)=(1,2,2, \ldots, 2)$. So, W is complement resolving set of $K_{1}+P_{m}$.

Next, it will be proved that W with $|W|=m-2$ is the complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(K_{1}+P_{m}\right)$ so that $\left|W^{\prime}\right|>m-2$. Suppose $\left|W^{\prime}\right|=m-1$. Then there are two vertices outside of W^{\prime}. As for the possibilities of W^{\prime} are:
i. If $W^{\prime}=V\left(K_{1}+P_{m}\right) \backslash\left\{v_{0}, v_{i}\right\}$ where $i=1,2, \ldots, m$ then $r\left(v_{0} \mid W^{\prime}\right) \neq r\left(v_{i} \mid W^{\prime}\right)$ because $d\left(v_{0}, v_{i+2}\right)=1$ while $d\left(v_{i}, v_{i+2}\right)=2$
ii. If $W^{\prime}=V\left(K_{1}+P_{m}\right) \backslash\left\{v_{i}, v_{i+1}\right\}$ then $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{i+1} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{i+2}\right)=2$ while $d\left(v_{i+1}, v_{i+2}\right)=1$
iii. If $W^{\prime}=V\left(K_{1}+P_{m}\right) \backslash\left\{v_{1}, v_{i}\right\}$ with $i=3,4, \ldots, m-1$ then $r\left(v_{1} \mid W^{\prime}\right) \neq r\left(v_{i} \mid W^{\prime}\right)$ because $d\left(v_{1}, v_{i+1}\right)=2$ while $d\left(v_{i}, v_{i+1}\right)=1$
iv. If $W^{\prime}=V\left(K_{1}+P_{m}\right) \backslash\left\{v_{k}, v_{l}\right\}$ with $k, l=2,3, \ldots, m-1, k<l$ then $r\left(v_{k} \mid W^{\prime}\right) \neq r\left(v_{l} \mid W^{\prime}\right)$ because $d\left(v_{k}, v_{k-1}\right)=1$ while $d\left(v_{l}, v_{k-1}\right)=2$
Based on the possibilities above, it can be concluded that W^{\prime} with $\left|W^{\prime}\right|=m-1$ is not the complement resolving set of $K_{1}+P_{m}$. Therefore W is the complement resolving set with maximum cardinality. So $\overline{\operatorname{dim}}\left(K_{1}+P_{m}\right)=m-2$

From Case 1, Case 2, and Case 3, we obtained $\overline{d \iota m}\left(K_{1}+P_{m}\right)=\left\{\begin{array}{cc}m-1 & \text { if } m=2,3 \\ m-2 & \text { if } m>3\end{array}\right.$ Therefore

$$
\begin{aligned}
\overline{\operatorname{dim}}\left(G \odot P_{m}\right) & =(n-1)(m+1)+ \begin{cases}m-1 & \text { if } m=2,3 \\
m-2 & \text { if } m>3\end{cases} \\
& =n m+n-m-1+ \begin{cases}m-1 & \text { if } m=2,3 \\
m-2 & \text { if } m>3\end{cases} \\
& =\left\{\begin{array}{c}
n m+n-2 \text { if } m=2,3 \\
n m+n-3
\end{array}\right.
\end{aligned}
$$

Thus $\overline{\operatorname{d\imath m}}\left(G \odot P_{m}\right)=\left\{\begin{array}{lc}n(m+1)-2 & \text { if } m=2,3 \\ n(m+1)-3 & \text { if } m>3\end{array}\right.$

Volume - IX, Issue - I, January - 2024, PP - 119-125
Corollary 2.2 Let G is a connected graph of order n and C_{m} is a cycle graph, then

$$
\overline{\operatorname{d\iota m}}\left(G \odot C_{m}\right)=\left\{\begin{array}{lr}
n(m+1)-2 & \text { if } m=3,4 \\
n(m+1)-4 & \text { if } m>4
\end{array}\right.
$$

Proof. Based on Theorem 1.5, $\overline{d \iota m}\left(G \odot C_{m}\right)=(n-1)(m+1)+\overline{d ı m}\left(K_{1}+C_{m}\right)$. So, first we determine $\overline{\operatorname{d} \iota m}\left(K_{1}+C_{m}\right)$. Suppose $V\left(K_{1}+C_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ and $E\left(K_{1}+C_{m}\right)=\left\{v_{0} v_{i} \mid i=1,2, \ldots, m\right\} \cup\left\{v_{i} v_{i+1} \mid i=\right.$ $1,2,3, \ldots, m-1\} \cup\left\{v_{1} v_{m}\right\}$
Case 1. For $m=3$
Select $W=\left\{v_{0}, v_{1}\right\} \subseteq V\left(K_{1}+C_{3}\right)$. Then there are $v_{2}, v_{3} \in V\left(K_{1}+C_{3}\right) \backslash W$ such that $r\left(v_{2} \mid W\right)=r\left(v_{3} \mid W\right)=$ $(1,1)$. So, W is complement resolving set of $K_{1}+C_{3}$. Because $\left|V\left(\underline{K_{1}}+C_{3}\right)\right|=4$ and $|W|=2=\mid V\left(K_{1}+\right.$ $\left.C_{3}\right) \mid-2$ is the maximum cardinality of complement resolving set, then $\overline{\operatorname{dım}}\left(K_{1}+C_{3}\right)=2$.
Case 2. For $m=4$
Select $W=\left\{v_{0}, v_{1}, v_{3}\right\} \subseteq V\left(K_{1}+C_{4}\right)$. Then there are $v_{2}, v_{4} \in V\left(K_{1}+C_{4}\right) \backslash W$ such that $r\left(v_{2} \mid W\right)=$ $r\left(v_{4} \mid W\right)=(1,1,1)$. So, W is complement resolving set of $K_{1}+C_{4}$. Because $\left|V\left(K_{1}+C_{4}\right)\right|=5$ and $|W|=3=$ $\left|V\left(K_{1}+C_{4}\right)\right|-2$ is the maximum cardinality of complement resolving set, then $\overline{\operatorname{dım}}\left(K_{1}+C_{4}\right)=3$.

Case 3. For $m>4$

Select $W=\left\{v_{0}, v_{5}, v_{6}, \ldots, v_{m}\right\} \subseteq V\left(K_{1}+C_{m}\right)$. Then there are $v_{2}, v_{3} \in\left(K_{1}+C_{m}\right) \backslash W$ such that $r\left(v_{2} \mid W\right)=$ $r\left(v_{3} \mid W\right)=(1,2,2, \ldots, 2)$. So, W is complement resolving set of $K_{1}+C_{m}$.

Next, it will be proved that W with $|W|=m-3$ is complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(K_{1}+C_{m}\right)$ so that $\left|W^{\prime}\right|>m-3$. Suppose $\left|W^{\prime}\right|=m-2$. Then there are three vertices outside of W^{\prime}. As for the possibilities of W^{\prime} are:
i. If $W^{\prime}=V\left(K_{1}+C_{m}\right) \backslash\left\{v_{0}, v_{i}, v_{i+1}\right\}$ where $i=1,2, \ldots, m-1$ then

- $\quad r\left(v_{0} \mid W^{\prime}\right) \neq r\left(v_{i} \mid W^{\prime}\right)$ because $d\left(v_{0}, v_{i+2}\right)=1$ while $d\left(v_{i}, v_{i+2}\right)=2$
- $r\left(v_{0} \mid W^{\prime}\right) \neq r\left(v_{i+1} \mid W^{\prime}\right)$ because $d\left(v_{0}, v_{i+3}\right)=1$ while $d\left(v_{i+1}, v_{i+3}\right)=2$
- $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{i+1} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{i+2}\right)=2$ while $d\left(v_{i+1}, v_{i+2}\right)=1$
ii. If $W^{\prime}=V\left(K_{1}+C_{m}\right) \backslash\left\{v_{0}, v_{i}, v_{j}\right\}$ where $i, j=1,2, \ldots, m$ and $j>i+1$ then
- $\quad r\left(v_{0} \mid W^{\prime}\right) \neq r\left(v_{i} \mid W^{\prime}\right)$ because $d\left(v_{0}, v_{i+2}\right)=1$ while $d\left(v_{i}, v_{i+2}\right)=2$
- $r\left(v_{0} \mid W^{\prime}\right) \neq r\left(v_{j} \mid W^{\prime}\right)$ because $d\left(v_{0}, v_{j+2}\right)=1$ while $d\left(v_{j}, v_{j+2}\right)=2$
- $\quad r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{j} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{j+1}\right)=2$ while $d\left(v_{j}, v_{j+1}\right)=1$
iii. If $W^{\prime}=V\left(K_{1}+C_{m}\right) \backslash\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ where $i=1,2, \ldots, m-2$ then
- $\quad r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{i+1} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{i-1}\right)=1$ while $d\left(v_{i+1}, v_{i-1}\right)=2$
- $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{i+2} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{i+3}\right)=2$ while $d\left(v_{i+2}, v_{i+3}\right)=1$
- $\quad r\left(v_{i+1} \mid W^{\prime}\right) \neq r\left(v_{i+2} \mid W^{\prime}\right)$ because $d\left(v_{i+1}, v_{i+3}\right)=2$ while $d\left(v_{i+2}, v_{i+3}\right)=1$
iv. If $W^{\prime}=V\left(K_{1}+C_{m}\right) \backslash\left\{v_{i}, v_{i+1}, v_{j}\right\}$ where $i, j=1,2, \ldots, m-1$ and $j>i+2$ then
- $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{i+1} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{i-1}\right)=1$ while $d\left(v_{i+1}, v_{i-1}\right)=2$
- $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{j} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{j+1}\right)=2$ while $d\left(v_{j}, v_{j+1}\right)=1$
- $r\left(v_{i+1} \mid W^{\prime}\right) \neq r\left(v_{j} \mid W^{\prime}\right)$ because $d\left(v_{i+1}, v_{j+1}\right)=2$ while $d\left(v_{j}, v_{j+1}\right)=1$
v. If $W^{\prime}=V\left(K_{1}+C_{m}\right) \backslash\left\{v_{i}, v_{j}, v_{k}\right\}$ where $i, j, k=1,2, \ldots, m$ and $j>i+1, k>j+1$ then
- $r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{j} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{j+1}\right)=2$ while $d\left(v_{j}, v_{j+1}\right)=1$
- $\quad r\left(v_{i} \mid W^{\prime}\right) \neq r\left(v_{k} \mid W^{\prime}\right)$ because $d\left(v_{i}, v_{k+1}\right)=2$ while $d\left(v_{k}, v_{k+1}\right)=1$
- $r\left(v_{j} \mid W^{\prime}\right) \neq r\left(v_{k} \mid W^{\prime}\right)$ because $d\left(v_{j}, v_{k+1}\right)=2$ while $d\left(v_{k}, v_{k+1}\right)=1$

Based on the possibilities above, it can be concluded that W^{\prime} with $\left|W^{\prime}\right|=m-2$ is not the complement resolving set of $K_{1}+C_{m}$. Therefore W is the complement resolving set with maximum cardinality. So $\overline{d \iota m}\left(K_{1}+C_{m}\right)=m-3$.

From Case 1, Case 2, and Case 3, we obtained $\overline{d \iota m}\left(K_{1}+C_{m}\right)=\left\{\begin{array}{cc}m-1 & \text { if } m=3,4 \\ m-3 & \text { if } m>4\end{array}\right.$ Therefore

$$
\begin{aligned}
\overline{\operatorname{drm}}\left(G \odot C_{m}\right) & =(n-1)(m+1)+\left\{\begin{array}{lr}
m-1 & \text { if } m=3,4 \\
m-3 & \text { if } m>4
\end{array}\right. \\
& =n m+n-m-1+ \begin{cases}m-1 & \text { if } m=3,4 \\
m-3 & \text { if } m>4\end{cases} \\
& = \begin{cases}n m+n-2 & \text { if } m=3,4 \\
n m+n-4 & \text { if } m>4\end{cases}
\end{aligned}
$$

Thus $\overline{d \imath m}\left(G \odot C_{m}\right)=\left\{\begin{array}{lr}n(m+1)-2 & \text { if } m=3,4 \\ n(m+1)-4 & \text { if } m>4\end{array}\right.$

Volume - IX, Issue - I, January - 2024, PP - 119-125
Corollary 2.3 Let G be a connected graph of order n and K_{m} is a complete graph, then $\overline{\operatorname{drm}}\left(G \odot K_{m}\right)=$ $n(m+1)-2$
Proof. Based on Theorem 1.5, $\overline{\operatorname{drm}}\left(G \odot K_{m}\right)=(n-1)(m+1)+\overline{d ı m}\left(K_{1}+K_{m}\right)$. Therefore, first we determine $\overline{\operatorname{drm}}\left(K_{1}+K_{m}\right)$. Suppose $V\left(K_{1}+K_{m}\right)=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\} \quad$ and $\quad E\left(K_{1}+K_{m}\right)=\left\{v_{i} v_{j} \mid i, j=\right.$ $0,1,2, \ldots, m\}$. Select $W=\left\{v_{2}, v_{3}, \ldots, v_{m}\right\} \subseteq V\left(K_{1}+K_{m}\right)$. Then there are $v_{0}, v_{1} \in V\left(K_{1}+K_{m}\right) \backslash W$ such that $r\left(v_{0} \mid W\right)=r\left(v_{1} \mid W\right)=(1,1, \ldots, 1)$. So, W is complement resolving set of $K_{1}+K_{m}$. Because $\mid V\left(K_{1}+\right.$ $\left.K_{m}\right) \mid=m+1$ and $|W|=m-1=\left|V\left(K_{1}+K_{m}\right)\right|-2$ is the maximum cardinality of complement resolving set, then $\overline{\operatorname{dlm}}\left(K_{1}+K_{m}\right)=m-1$. Threfore

$$
\begin{aligned}
\overline{\operatorname{dim}}\left(G \odot K_{m}\right) & =(n-1)(m+1)+m-1 \\
& =n m+n-m-1+m-1 \\
& =n m+n-2
\end{aligned}
$$

Thus $\overline{\operatorname{dım}}\left(G \odot K_{m}\right)=n(m+1)-2$.
Corollary 2.4 Let G be a connected graph of order n and S_{m} is a star graph, then $\overline{\operatorname{dım}}\left(G \odot S_{m}\right)=n(m+2)-2$ Proof. Based on Theorem $1.5 \overline{d \iota m}\left(G \odot S_{m}\right)=(n-1)(m+2)+\overline{d ı m}\left(K_{1}+S_{m}\right)$. So, first we determine $\overline{d \iota m}\left(K_{1}+S_{m}\right)$. Suppose $V\left(K_{1}+S_{m}\right)=\left\{c, v_{0}, v_{1}, \ldots, v_{m}\right\} \quad$ and $\quad E\left(K_{1}+S_{m}\right)=\left\{c v_{i} \mid i=0,1,2, \ldots, m\right\} \cup$ $\left\{v_{0} v_{i} \mid i=1,2,3, \ldots, m\right\}$. Select $W=\left\{c, v_{0}, v_{3}, v_{4}, \ldots, v_{m}\right\} \subseteq V\left(K_{1}+S_{m}\right)$. Then there are $v_{1}, v_{2} \in V\left(K_{1}+S_{m}\right) \backslash$ W such that $r\left(v_{1} \mid W\right)=r\left(v_{2} \mid W\right)=(1,1,2,2, \ldots, 2)$. So, W is complement resolving set of $K_{1}+S_{m}$. Because $\left|V\left(K_{1}+S_{m}\right)\right|=m+2$ and $|W|=m=\left|V\left(K_{1}+S_{m}\right)\right|-2$ is the maximum cardinality of complement resolving set, then $\overline{d \iota m}\left(K_{1}+S_{m}\right)=m$. Therefore

$$
\overline{\operatorname{dım}}\left(G \odot S_{m}\right)=(n-1)(m+2)+m=n m+2 n-m-2+m=n m+2 n-2
$$

Thus $\overline{d \iota m}\left(G \odot S_{m}\right)=n(m+2)-2$.

III.COMPLEMENT METRIC DIMENSION OF COMB PRODUCT GRAPH

In this section we get the complement metric dimension of comb product graphs, which are $G \triangleleft P_{m}, G \triangleleft C_{m}$, $G \triangleleft S_{m}$, and $G \triangleleft K_{m}$.

Corollary 3.1 Let G is a connected graph of order $n \geq 3$ and P_{m} is a path graph with $m \geq 3$, then

$$
\overline{\operatorname{dım}}\left(G \triangleleft P_{m}\right)=\left\{\begin{array}{cl}
(n-1) m+1 & \text { if the grafting vertex of } P_{m} \text { is not end vertex } \\
m \overline{d \iota m}(G) & \text { if the grafting vertex of } P_{m} \text { is the end vertex }
\end{array}\right.
$$

Proof. Let $\quad V\left(G \triangleleft P_{m}\right)=\left\{v_{i}^{j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m\right\} \quad$ and $\quad E\left(G \triangleleft P_{m}\right)=E(G) \cup\left\{v_{i}^{j} v_{i}^{j+1} \mid i=\right.$ $1,2, \ldots, n ; j=1,2, \ldots, m-1\}$.
Case 1. If the grafting vertex of P_{m} is not end vertex
For example, the grafting vertex of P_{m} is v_{i}^{k} where $k=2,3, \ldots, m-1$. Select $W=\left\{v_{1}^{k}\right\} \cup$ $\left\{v_{i}^{j} \mid i=2,3, \ldots, n ; j=1,2, \ldots, m\right\} \subseteq V\left(G \triangleleft P_{m}\right)$. Then there are $v_{1}^{k-1}, v_{1}^{k+1} \in V\left(G \triangleright P_{m}\right) \backslash W$ such that $r\left(v_{1}^{k-1} \mid W\right)=r\left(v_{1}^{k+1} \mid W\right)$ for $i=2,3, \ldots, n ; j=1,2, \ldots, m$. So, W is complement resolving set of $G \triangleright P_{m}$.

Furthermore, it will be shown that W with $|W|=(n-1) m+1$ is the complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(G \triangleleft P_{m}\right)$ so that $\left|W^{\prime}\right|>(n-1) m+1$. Suppose $W^{\prime}=W \cup\{a\}$ where $a \in\left\{v_{i}^{j} \mid j \neq k\right\}$. Then the possibilities of W^{\prime} :
i. If $W^{\prime}=W \cup\left\{v_{1}^{l}\right\}$ where $l=1, m$, then for $p, q \neq k, l$ apply $r\left(v_{1}^{p} \mid W^{\prime}\right) \neq r\left(v_{1}^{q} \mid W^{\prime}\right)$ because $d\left(v_{1}^{p}, v_{1}^{l}\right) \neq d\left(v_{1}^{q}, v_{1}^{l}\right)$.
ii. If $W^{\prime}=W \cup\left\{v_{1}^{l}\right\}$ where $l \neq 1, k, m$, then for $p, q \neq k$ apply $r\left(v_{1}^{p} \mid W^{\prime}\right) \neq r\left(v_{1}^{q} \mid W^{\prime}\right)$ because $\left(d\left(v_{1}^{p}, v_{1}^{k}\right), d\left(v_{1}^{p}, v_{1}^{l}\right) \neq\left(d\left(v_{1}^{q}, v_{1}^{k}\right), d\left(v_{1}^{q}, v_{1}^{l}\right)\right.\right.$.
Based on the possibilities above, it can be concluded that W with $\left|W^{\prime}\right|>(n-1) m+1$ is not the complement resolving set of $G \triangleleft P_{m}$. Therefore W is the complement resolving set with maximum cardinality. So , $\overline{\operatorname{drm}}(G \triangleleft$ $\left.P_{m}\right)=(n-1) m+1$ if the grafting vertex of P_{m} is not end vertex.
Case 2. If the grafting vertex of P_{m} is the end vertex
Let the grafting vertex of P_{m} is v_{i}^{1}. If W_{G} is basis complement of graph G and $W_{G}=\left\{w_{i} \mid i=1,2, \ldots, \overline{d \iota m}(G)\right\}$ then $W_{G} \subseteq V(G)=\left\{v_{i}^{1} \mid i=2,3, \ldots, n\right\}$ and there is $v_{p}^{1}, v_{q}^{1} \in V(G) \backslash W_{G}$ such that $r\left(v_{p}^{1} \mid W_{G}\right)=r\left(v_{q}^{1} \mid W_{G}\right)$. Select $W=W_{G} \cup\left\{v_{i}^{j} \mid v_{i}^{1}=w_{i} ; j=2,3, \ldots, m\right\} \subseteq V\left(G \triangleright P_{m}\right)$, then $v_{p}^{1}, v_{q}^{1} \in V\left(G \triangleright P_{m}\right) \backslash W$ and $r\left(v_{p}^{1} \mid W\right)=r\left(v_{q}^{1} \mid W\right)$ because $d\left(v_{p}^{1}, v_{i}^{j}\right)=d\left(v_{q}^{1}, v_{i}^{j}\right)$ for $v_{i}^{1}=w_{1}$ and $j=2,3, \ldots, m$. So, W is complement resolving set in graph $G \triangleleft$ P_{m}.

Volume - IX, Issue - I, January - 2024, PP - 119-125
Furthermore, it will be proved that W where $|W|=m \cdot \overline{\operatorname{drm}}(G)$ is the complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(G \triangleleft P_{m}\right)$ so that $\left|W^{\prime}\right|>m \cdot \overline{\operatorname{drm}}(G)$. Suppose $W^{\prime}=W \cup\{a\}$ with $a \in V\left(G \triangleleft P_{m}\right) \backslash W$. Then the possibilities of W^{\prime} :
i. If $W^{\prime}=W \cup\left\{v_{l}^{1}\right\}$ where $v_{l}^{1} \notin W_{G}$ then W^{\prime} is not basis complement of graph $G \triangleleft P_{m}$ because W_{G} is complement basis of G so it is not possible to have a complement resolving set in graph G which has a cardinality greater so W_{G}.
ii. If $W^{\prime}=W \cup\left\{v_{l}^{j}\right\}$ with $v_{l}^{1} \notin W_{G}$ and $j=2,3, \ldots, m$, then W^{\prime} is not basis complement of $G \triangleleft P_{m}$ because v_{l}^{j} is located in one branch with v_{l}^{1} which is also not a member of the basis of graph G.
Based on these possibilities, it can be concluded that W^{\prime} with $\left|W^{\prime}\right|>m \cdot \overline{\operatorname{dim}}(G)$ is not complement resolving set of graph $G \triangleleft P_{m}$. Therefore W is the complement resolving set with maximum cardinality. So , $\overline{d \iota m}\left(G \triangleleft P_{m}\right)=m \cdot \overline{d \iota m}(G)$ if the grafting vertex of P_{m} is the end vertex.

Based on Case 1 and Case 2, we obtained

$$
\overline{\operatorname{drm}}\left(G \triangleleft P_{m}\right)=\left\{\begin{array}{cl}
(n-1) m+1 & \text { if the grafting vertex of } P_{m} \text { is not end vertex } \\
m \overline{\operatorname{drm}(G)} & \text { if the grafting vertex of } P_{m} \text { is the end vertex }
\end{array}\right.
$$

Corollary 3.2 Let G be a connected graph of order $n \geq 3$ and C_{m} is a cycle graph with $m \geq 3$, then

$$
\overline{\operatorname{dım}}\left(G \triangleleft C_{m}\right)= \begin{cases}(n-1) m+1 & \text { if } m \text { is odd } \\ (n-1) m+2 & \text { if } m \text { is even }\end{cases}
$$

Proof. Let $V\left(G \triangleleft C_{m}\right)=\left\{v_{i}^{j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m\right\} \quad$ and $\quad E\left(G \triangleleft P_{m}\right)=E(G) \cup\left\{v_{i}^{j} v_{i}^{j+1} \mid i=\right.$ $1,2, \ldots, n ; j=1,2, \ldots, m-1\} \cup\left\{v_{i}^{1} v_{i}^{m} \mid i=1,2, \ldots, n\right\}$.
Case 1. If m is odd
Suppose the grafting vertex on C_{m} is v_{i}^{1} where $i=1,2, \ldots, n$. Select $W=\left\{v_{1}^{1}\right\} \cup\left\{v_{i}^{j} \mid i=2,3, \ldots, n ; j=\right.$ $1,2, \ldots, m\} \subseteq V\left(G \triangleleft C_{m}\right)$. Then there are $v_{1}^{m}, v_{1}^{2} \in V\left(G \triangleleft C_{m}\right) \backslash W$ such that $r\left(v_{1}^{m} \mid W\right)=r\left(v_{1}^{2} \mid W\right)$. So, W is complement resolving set of $G \triangleleft C_{m}$.

Furthermore, it will be proved that W with $|W|=(n-1) m+1$ is the complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(G \triangleleft C_{m}\right)$ so that $\left|W^{\prime}\right|>(n-1) m+1$. Suppose $W^{\prime}=W \cup\{a\}$ with $a \in\left\{v_{1}^{j} \mid j=2,3, \ldots, m\right\}$. Then W^{\prime} is not a complement resolving set of $G \triangleleft C_{m}$ because $r\left(v_{1}^{p} \mid W^{\prime}\right) \neq$ $r\left(v_{1}^{q} \mid W^{\prime}\right)$ for $p, q \neq 1, j$.

Based on the evidence, it can be concluded that W with $\left|W^{\prime}\right|>(n-1) m+1$ is not the complement resolving set of $G \triangleleft C_{m}$. Therefore W is the complement resolving set with maximum cardinality. So, $\overline{\operatorname{dim}}(G \triangleleft$ $\left.C_{m}\right)=(n-1) m+1$ if m is odd.
Case 2. If m is even
Suppose the grafting vertex on C_{m} is v_{i}^{1} where $i=1,2, \ldots, n$. Select $W=\left\{v_{1}^{1}, v_{1}^{\frac{1}{2} m+1}\right\} \cup$ $\left\{v_{i}^{j} \mid i=2,3, \ldots, n ; j=1,2, \ldots, m\right\} \subseteq V\left(G \triangleleft C_{m}\right)$. Then there are $v_{1}^{m}, v_{1}^{2} \in V\left(G \triangleleft C_{m}\right) \backslash W$ such that $r\left(v_{1}^{m} \mid W\right)=$ $r\left(v_{1}^{2} \mid W\right)$. So, W is the complement resolving set of $G \triangleleft C_{m}$.

Furthermore, it will be proved that W with $|W|=(n-1) m+2$ is the complement resolving set with maximum cardinality. Take any set $W^{\prime} \subseteq V\left(G \triangleright C_{m}\right)$ so that $\left|W^{\prime}\right|>(n-1) m+2$. Suppose $W^{\prime}=W \cup\{a\}$ with $a \in\left\{v_{1}^{j} \mid j=2,3, \ldots, m\right\}$. Then W^{\prime} is not a complement resolving set of $G \triangleleft C_{m}$ because $r\left(v_{1}^{p} \mid W^{\prime}\right) \neq$ $r\left(v_{1}^{q} \mid W^{\prime}\right)$ for $p, q \neq 1, j, \frac{1}{2} m+1$

Based on the evidence, it can be concluded that W with $\left|W^{\prime}\right|>(n-1) m+2$ is not the complement resolving set of $G \triangleleft C_{m}$. Therefore W is the complement resolving set with maximum cardinality. So, $\overline{\operatorname{dim}}(G \triangleleft$ $\left.C_{m}\right)=(n-1) m+2$ if m is even.

Based on Case 1 and Case 2, we obtained $\overline{\operatorname{drm}}\left(G \triangleleft C_{m}\right)= \begin{cases}(n-1) m+1 & \text { if } m \text { is odd } \\ (n-1) m+2 & \text { if } m \text { is even }\end{cases}$
Corollary 3.3 Let G be a connected graph of order n and K_{m} is a complete graph with $m \geq 3$, then $\overline{\operatorname{drm}}(G \triangleleft$ $\left.K_{m}\right)=m n-2$
Proof. Let $\quad V\left(G \triangleleft K_{m}\right)=\left\{v_{j}^{i} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m\right\} \quad$ and $\quad E\left(G \triangleleft K_{m}\right)=E(G) \cup\left\{v_{i}^{j} v_{i}^{k} \mid i=\right.$ $1,2, \ldots, n ; j, k=1,2, \ldots, m\}$. Suppose the grafting vertex on K_{m} is v_{i}^{1} with $i=1,2, \ldots, n$. Select $W=\left\{v_{1}^{j} \mid j=\right.$ $1,2, \ldots, m-2\} \cup\left\{v_{i}^{j} \mid i=2,3, \ldots, n ; j=1,2, \ldots, m\right\} \subseteq V\left(G \triangleright K_{m}\right)$. Then there are $v_{1}^{m}, v_{1}^{m-1} \in V\left(G \triangleleft K_{m}\right) \backslash W$ such that $r\left(v_{1}^{m} \mid W\right)=r\left(v_{1}^{m-1} \mid W\right)$. So, W is the complement resolving set of $G \triangleleft K_{m}$. Because $\left|V\left(G \triangleleft K_{m}\right)\right|=$

Volume - IX, Issue - I, January - 2024, PP - 119-125
$m n$ and $|W|=m n-2=\left|V\left(G \triangleleft K_{m}\right)\right|-2$ is the complement resolving set with maximum cardinality, then $\overline{\operatorname{d} m}\left(G \triangleleft K_{m}\right)=m n-2$.

Corollary 3.4 Let G be a connected graph of order $n \geq 3$ and S_{m} is a star graph with $m \geq 2$, then $\overline{d \iota m}(G \triangleleft$ $\left.S_{m}\right)=n(m+1)-2$.
Proof. Let $\quad V\left(G \triangleleft S_{m}\right)=\left\{v_{i}^{j} \mid i=1,2, \ldots, n ; j=0,1,2, \ldots, m\right\} \quad$ and $\quad E\left(G \triangleleft S_{m}\right)=E(G) \cup$ $\left\{v_{i}^{0} v_{i}^{j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m\right\}$. Suppose the grafting vertex on S_{m} is is v_{i}^{0} with $i=1,2, \ldots, n$. Select $W=$ $\left\{v_{1}^{j} \mid j=0,1,2, \ldots, m-2\right\} \cup\left\{v_{i}^{j} \mid i=2,3, \ldots, n ; j=0,1,2, \ldots, m\right\} \subseteq V\left(G \triangleleft S_{m}\right)$. Then there are $v_{1}^{m}, v_{1}^{m-1} \in$ $V\left(G \triangleleft S_{m}\right) \backslash W$ such that $r\left(v_{1}^{m} \mid W\right)=r\left(v_{1}^{m-1} \mid W\right)$. So, W is the complement resolving set of $G \triangleright S_{m}$. Because $\left|V\left(G \triangleleft S_{m}\right)\right|=(m+1) n$ and $|W|=n(m+1)-2=\left|V\left(G \triangleleft S_{m}\right)\right|-2$ is the complement resolving set with maximum cardinality, then $\overline{\operatorname{drm}}\left(G \triangleleft S_{m}\right)=n(m+1)-2$.

IV.COMMUTATIVE CHARACTERIZATION OF CORONA AND COMB PRODUCTS OF GRAPHS WITH RESPECT TO COMPLEMENT METRIC DIMENSION

In this section we get the characterization of corona and comb products of graphs with respect to complement metric dimension.

Corollary 4.1 Let G and H be connected graphs with order n and m where $n, m \geq 2$. Then

$$
\overline{\operatorname{d\iota m}}(G \odot H)=\overline{\operatorname{drm}}(H \odot G) \Leftrightarrow 2 n+\overline{\operatorname{d\iota m}}\left(K_{1}+H\right)=2 m+\overline{\operatorname{dım}}\left(K_{1}+G\right)
$$

Proof.

(\Rightarrow) Suppose $\overline{d \iota m}(G \odot H)=\overline{d \iota m}(H \odot G)$. Based onTheorem 1.5,
(\Leftrightarrow) Suppose $2 n+\overline{d \iota m}\left(K_{1}+H\right)=2 m+\overline{d \iota m}\left(K_{1}+G\right)$. Then $\overline{d \iota m}\left(K_{1}+H\right)=2 m-2 n+\overline{d \iota m}\left(K_{1}+G\right)$. Based on Theorem 1.5, $\overline{\operatorname{dım}}(G \odot H)=(n-1)(m+1)+\overline{d \iota m}\left(K_{1}+H\right)$. Thus
$\overline{d \iota m}(G \odot H)=(n-1)(m+1)+2 m-2 n+\overline{\operatorname{drm}}\left(K_{1}+G\right)$

$$
\begin{aligned}
& =n m+n-m-1+2 m-2 n+\overline{d l m}\left(K_{1}+G\right) \\
& =n m-n+m-1+\overline{d l m}\left(K_{1}+G\right) \ldots \text { (i) }
\end{aligned}
$$

Based on Theorem 1.5 too,
$\overline{\operatorname{dım}}(H \odot G)=(m-1)(n+1)+\overline{d ı m}\left(K_{1}+G\right)=n m-n+m-1+\overline{d \iota m}\left(K_{1}+G\right) \ldots$ (ii)
It can be seen that Equation (i) is equal to Equation (ii) therefore $\overline{d \iota m}(G \odot H)=\overline{d \iota m}(H \odot G)$.

Corollary 4.2 Let G and H be connected graphs other than path with order n and m where $n, m \geq 3$. Then

$$
\overline{d l m}(G \triangleleft H) .=\overline{\operatorname{drm}}(H \triangleleft G) \Leftrightarrow \overline{\operatorname{dlm}}(H)-m=\overline{\operatorname{dlm}}(G)-n
$$

Proof.

(\Rightarrow) Suppose $\overline{d \imath m}(G \triangleleft H)=\overline{d l m}(H \triangleleft G)$. Based on Theorem 1.6,

$$
\begin{aligned}
\overline{\operatorname{dım}}(G \triangleleft H) & =\overline{\operatorname{dım}}(H \triangleleft G) \\
\overline{\operatorname{dım}}(H)+(n-1) m & =\overline{\operatorname{dım}}(G)+(m-1) n \\
\overline{\operatorname{dım}}(H)+n m-m & =\overline{d \iota m}(G)+n m-n \\
\overline{\operatorname{dım}}(H)-m & =\overline{d \iota m}(G)-n
\end{aligned}
$$

(\Leftrightarrow) Suppose $\overline{d \iota m}(H)-m=\overline{d \iota m}(G)-n$. Then $\overline{d \iota m}(H)=\overline{d \iota m}(G)+m-n$. Based on Theorem 1.6, $\overline{d \iota m}(G \triangleleft H)=\overline{d \iota m} H+(n-1) m$. Thus
$\overline{\operatorname{dım}}(G \triangleleft H)=\overline{\operatorname{dım}}(G)+m-n+(n-1) m$

$$
=\overline{\operatorname{dım}}(G)+m-n+n m-m
$$

$$
=\overline{d \iota m}(G)-n+n m \ldots \text { (i) }
$$

Based onTheorem 1.6 too,

$$
\begin{aligned}
\overline{\operatorname{dlm}}(H \triangleleft G)= & \overline{\operatorname{dım}}(G)+(m-1) n \\
& =\overline{\operatorname{dlm}}(G)+n m-n \ldots \text { (ii) }
\end{aligned}
$$

It can be seen that Equation (i) is equal to Equation (ii) so $\overline{d l m}(G \triangleleft H)=\overline{\operatorname{drm}}(H \triangleleft G)$.

$$
\begin{aligned}
& \overline{d \iota m}(G \odot H)=\overline{d \iota m}(H \odot G) \\
& (n-1)(m+1)+\overline{d \iota m}\left(K_{1}+H\right)=(m-1)(n+1)+\overline{d \iota m}\left(K_{1}+G\right) \\
& n m+n-m-1+\overline{d \iota m}\left(K_{1}+H\right)=n m-n+m-1+\overline{d \iota m}\left(K_{1}+G\right) \\
& n-m+\overline{d \iota m}\left(K_{1}+H\right)=m-n+\overline{d \iota m}\left(K_{1}+G\right) \\
& 2 n+\overline{d l m}\left(K_{1}+H\right)=2 m+\overline{d \iota m}\left(K_{1}+G\right)
\end{aligned}
$$

Volume - IX, Issue - I, January - 2024, PP - 119-125

V.CONCLUSION

In this paper we obtained two results related to the commutative characterization of corona and comb products of graphs with respect to complement metric dimension which are:
i. Commutative characterization of corona products of graphs with respect to complement metric dimension is $\overline{d \iota m}(G \odot H)=\overline{d \iota m}(H \odot G) \Leftrightarrow 2 n+\overline{d \iota m}\left(K_{1}+H\right)=2 m+\overline{d \iota m}\left(K_{1}+G\right)$ where n and m are the order of G and H and $n m \geq 2$.
ii. Commutative characterization of comb products of graphs with respect to complement metric dimension is $\overline{\operatorname{dım}}(G \triangleleft H) .=\overline{d \iota m}(H \triangleleft G) \Leftrightarrow \overline{d \iota m}(H)-m=\overline{\operatorname{dım}}(G)-n$ where n and m are the order of G and H and $n, m \geq 3$.

Acknowledgements

Thank you to Department Mathematics, Mathematics and Science Faculty, and LPPM Universitas Islam Madura for the assistance in this research.

REFERENCES

[1] Agustin, I.H., Hasan, M., Dafik, Alfarisi, R., Kristiana, A., and Prihandini, R., 2018. Local Edge Antimagic Coloring of Comb Product of Graph. Journal of Physic, vol. 1008, no. 012038, pp. 1-11.
[2] Alexanderson, G.L., 2006. Euler and Konigsbergs Bridges: A Historycal view. BULLETIN (New Serries) OF THE AMERICAN MATHEMATICAL SOCIETY, vol. 43, no. 4, pp. 567-573.
[3] Cacares, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seare, C., and Wood, D.R., 2007. On the Metric Dimention of Cartesian Products of Graph. SIAM J. Discrete Math, vol. 21, no. 2, pp. 423-441.
[4] Chartrand, G., Eroh, L., Johnson, M.A., and Oellermann, O.R., 2000. Resolbility in Graph and the Metric Dimintionof Graph. Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99-113.
[5] Cvetkovic, D., Simic, S., "Graph Spectran in Computer Science," Linear Algebra and its Application , vol. 434, pp. 1545-1562, 2011.
[6] Dairin, Ihsan M., Ramli, M., 2018. Interactive Graph Constructing on Graph Theory Application Develoment. Journal of Physics, vol. 948, no. 012064, pp. 1-7.
[7] Haryadi, T.I., Susilowati, L., 2021. Betweenness Centrality in Corona Product of Path and Star Graph. Journal of Physics , vol. 1731, no. 012028, pp. 1-9.
[8] Susilowati, L., Utoyo, M.I., Slamin, 2017. On Commutative Characterization of Graph Operation With Respect to Metric Dimension. Math.Fund.sci, vol. 49, no. 2, pp. 156-170.
[9] Susilowati, L., Slamin, Rosfiana, A., 2019. The Complement Metric Dimention of Graphs and Its Operations. International Journal of Civil Engineering and Technology, vol. 10, no. 3, pp. 2386-2396.

